Skip to content
2000
Volume 14, Issue 9
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background: At present, financial Credit Scoring (CS) is considered as one of the hottest research topics in finance domain, which assists in determining the credit value of individual persons as well as organizations. Data mining approaches are found to be useful in banking sectors, which assist them in designing and developing proper products or services to the customer with minimal risks. Credit risks are linked to loss and loan defaults, which are the main source of risks that exist in the banking sector. Aim: The current research article aims at presenting an effective credit score prediction model for banking sector which can assist them to foresee the credible customers, who have applied for loan. Methods: An optimal Deep Neural Network (DNN)-based framework is employed for credit score data classification using Stacked Autoencoders (SA). Here, SA is applied to extract the features from the dataset. These features are then classified using SoftMax layer. Besides, the network is also tuned Truncated Backpropagation Through Time (TBPTT) model in a supervised way using the training dataset. Results: The proposed model was tested using a benchmark German credit dataset, which includes the necessary variables to determine the credit score of a loan applicant. The presented SADNN model achieved the maximum classification while the model attained high accuracy rate of 96.10%, F-score of 97.25% and kappa value of 90.52%. Conclusion: The experimental results pointed out that a maximum classification performance was attained by the proposed model on all different aspects. The proposed method helped in determining the capability of a borrower in repaying the loan and computing the credit risks properly.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2666255813999200819164013
2021-12-01
2025-11-02
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2666255813999200819164013
Loading

  • Article Type:
    Research Article
Keyword(s): Classification; Credit risks; Credit Scoring; Deep Neural Network; DNN; TBPTT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test