Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background: Moisture content is one of the most important indicators for the quality of fresh strawberries. Currently, several methods are usually employed to detect the moisture content in strawberry. However, these methods are relatively simple and can only be used to detect the moisture content of single samples but not batches of samples. Besides, the integrity of the samples may be destroyed. Therefore, it is important to develop a simple and efficient prediction method for strawberry moisture to facilitate the market circulation of strawberry. Objective: This study aims to establish a novel BP neural network prediction model to predict and analyze strawberry moisture. Methods: Toyonoka and Jingyao strawberries were taken as the research objects. The hyperspectral technology, spectral difference analysis, correlation coefficient method, principal component analysis and artificial neural network technology were combined to predict the moisture content of strawberry. Results: The characteristic wavelengths were highly correlated with the strawberry moisture content. The stability and prediction effect of the BP neural network prediction model based on characteristic wavelengths are superior to those of the prediction model based on principal components, and the correlation coefficients of the calibration set for Toyonaka and Jingyao respectively reached up to 0.9532 and 0.9846 with low levels of standard deviations (0.3204 and 0.3010, respectively). Conclusion: The BP neural network prediction model of strawberry moisture has certain practicability and can provide some reference for the on-line and non-destructive detection of fruits and vegetables.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2213275912666190429161911
2020-08-01
2025-09-09
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2213275912666190429161911
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test