Skip to content
2000
Volume 13, Issue 5
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Introduction: Image segmentation is one of the basic practices that involve dividing an image into mutually exclusive partitions. Learning how to partition an image into different segments is considered as one of the most critical and crucial step in the area of medical image analysis. Objective: The primary objective of the work is to design an integrated approach for automating the process of level set segmentation for medical image segmentation. This method will help to overcome the problem of manual initialization of parameters. Methods: In the proposed method, input image is simplified by the process of intuitionistic fuzzification of an image. Further segmentation is done by intuitionistic based clustering technique incorporated with local spatial information (S-IFCM). The controlling parameters of level set method are automated by S-IFCM, for defining anatomical boundaries. Results: Experimental results were carried out on MRI and CT-scan images of brain and liver. The results are compared with existing Fuzzy Level set segmentation; Spatial Fuzzy Level set segmentation using MSE, PSNR and Segmentation Accuracy. Qualitatively results achieved after proposed segmentation technique shows more clear definition of boundaries. The attain PSNR and MSE value of propose algorithm proves the robustness of algorithm. Segmentation accuracy is calculated for the segmentation results of the T-1 weighted axial slice of MRI image with 0.909 value. Conclusion: The proposed method shows good accuracy for the segmentation of medical images. This method is a good substitute for the segmentation of different clinical images with different modalities and proves to give better result than fuzzy technique.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2213275912666190218150045
2020-10-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2213275912666190218150045
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test