Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background: Face annotation is the naming procedure to assign the correct name of a person who has emerged on an image. Objective: The main objective of this paper was to compare and evaluate six feature extraction techniques for face annotation under real-time challenging images and to find the best suitable feature for face annotation. Method: From literature review, it has been observed that Name Semantic Network (NSN) outperforms other annotation methods for various unconditioned images as well as ambiguous tags. However, the NSN’s performance can differ with various feature extraction techniques. Hence, its success is influenced by the feature extraction techniques that are used. Therefore, in this work, the NSN’s performance is experimented and evaluated with various feature extraction methods such as the Discrete Cosine Transform Local Binary Pattern (DCT-LBP), Discrete Fourier Transform Local Binary Pattern (DFT-LBP), Local Patterns of Gradients (LPOG), Gist, Local Order-constrained Gradient Orientations (LOGO) and Convolutional Neural Networks (CNNs) deep features. Results: Different feature extraction approaches demonstrate variations in performance with respect to a range of difficulties in face annotation using the Yahoo, LFW and IMFDB databases. The experimental results show that the deep feature method can achieve better recognition rate other than texture features. It confronts several issues in the presentation of a face in an image and produces better results. Conclusion: It is concluded that the CNNs deep feature is the best feature extraction technique that offers enhanced performance for face annotation.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2213275912666190204141902
2020-08-01
2025-09-07
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2213275912666190204141902
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test