Skip to content
2000
Volume 13, Issue 2
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background: Robotic path planning is an important facet of robotics. Its purpose is to make robots move independently in their work environment from a source to a destination whilst satisfying certain constraints. Constraint conditions are as follows: avoiding collision with obstacles, staying as far as possible from the obstacles, traversing the shortest path, taking minimum time, consuming minimum energy and so on. Hence, the robotic path planning problem is a conditional constraint optimization problem. Methods: To overcome this problem, the Flower Pollination Algorithm, which is a metaheuristic approach is employed. The effectiveness of Flower Pollination Algorithm is showcased by using diverse maps. These maps are composed of several fixed obstacles in different positions, a source and a target position. Initially, the pollinators carrying pollen (candidate solutions) are at the source location. Subsequently, the pollinators must pave a way towards the target location while simultaneously averting any obstacles that are encountered enroute. The pollinators should also do so with the minimum cost possible in terms of distance. The performance of the algorithm in terms of CPU time is evaluated. Flower Pollination Algorithm was also compared to the Particle Swarm Optimization algorithm and Ant Colony Optimization algorithm. Result: It was observed that Flower Pollination Algorithm is faster than Particle Swarm Optimization and Ant Colony Optimization in terms of CPU time for the same number of iterations to find an optimized solution for robotic path planning. Conclusion: The Flower Pollination Algorithm can be effectively applied for solving robotic path planning problem with static obstacles.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/2213275911666190320160837
2020-04-01
2025-10-23
Loading full text...

Full text loading...

/content/journals/rascs/10.2174/2213275911666190320160837
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test