Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Background

Traffic prediction is a key component of the intelligent transportation system for researchers and practitioners. It is extremely challenging because traffic flows typically exhibit complicated patterns, complex spatio-temporal correlations, and non-linearities.

Objective

Prediction of traffic density on the roads can help not only urban traffic management but also support for other road services such as path planning.

Methods

In this paper, we propose an attention-based graph convolutional network (AGCN) model to solve the traffic prediction problem. The primary focus of AGCN is on temporal, daily, and weekly dependencies of traffic periodicity. To efficiently capture the dynamic geographical and temporal correlations in traffic data, an attention-based spatial-temporal mechanism is employed. Additionally, standard convolutions are employed to extract temporal data and graph convolutional networks are used to capture spatial patterns.

Results

The final prediction results are generated by fusing the outputs of these components. California Transportation Agencies Performance Measurement System (CalTrans PeMS) dataset is used in this research to assess the performance. The proposed model has been validated using simulations that exhibit the viability of the method and show 4% increase in the accuracy of prediction.

Conclusion

For improved route planning and to arrive at the destination in the least amount of time, an efficient traffic pre- diction model is suggested. This enhances overall transportation system efficiency and aids in traffic control.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558351567241029071333
2024-12-09
2026-01-08
Loading full text...

Full text loading...

References

  1. LindenbachÁ. “European tendencies and co-operation in the field of ITS systems - National achievements and challenges in Hungary”, Selected Sci. Pap. -.J. Civ. Eng.2016111859610.1515/sspjce‑2016‑0010
    [Google Scholar]
  2. FigueiredoL. JesusI. MachadoJ.T. FerreiraJ.R. De CarvalhoJ.M. Towards the development of intelligent transportation systems2001 IEEE Intelligent Transportation Systems. Proceedings (Cat. No. 01TH8585)Oakland, CA, USA20011206121110.1109/ITSC.2001.948835
    [Google Scholar]
  3. ZhengQ. ZhaoP. ZhangD. WangH. MR‐DCAE: Manifold regularization‐based deep convolutional autoencoder for unauthorized broadcasting identification.Int. J. Intell. Syst.202136127204723810.1002/int.22586
    [Google Scholar]
  4. ZhengQ. SaponaraS. TianX. YuZ. ElhanashiA. YuR. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT.Cogn. Neurodynamics202418265967110.1007/s11571‑023‑10015‑738699610
    [Google Scholar]
  5. ZhengQ. TianX. YuZ. DingY. ElhanashiA. SaponaraS. KpalmaK. Mobilerat: A lightweight radio transformer method for automatic modulation classification in drone communication systems.Drones (Basel)202371059610.3390/drones7100596
    [Google Scholar]
  6. ZhengQ. WangR. TianX. YuZ. WangH. ElhanashiA. SaponaraS. A real-time transformer discharge pattern recognition method based on CNN-LSTM driven by few-shot learning.Electr. Power Syst. Res.202321910924110.1016/j.epsr.2023.109241
    [Google Scholar]
  7. ZhengQ. TianX. YangM. WuY. SuH. PAC-Bayesian framework based drop-path method for 2D discriminative convolutional network pruning.Multidimens. Syst. Signal Process.202031379382710.1007/s11045‑019‑00686‑z
    [Google Scholar]
  8. QureshiK.N. AbdullahA.H. A survey on intelligent transportation systems.Middle East J. Sci. Res.2013155629642
    [Google Scholar]
  9. AsifM. Al-RazganM. AliY.A. YunrongL. Graph convolution networks for social media trolls detection use deep feature extraction.J. Cloud Comput. (Heidelb.)20241313310.1186/s13677‑024‑00600‑4
    [Google Scholar]
  10. HanH. AsifM. AwwadE.M. SarhanN. GhadiY.Y. XuB. Innovative deep learning techniques for monitoring aggressive behavior in social media posts.J. Cloud Comput. (Heidelb.)20241311910.1186/s13677‑023‑00577‑6
    [Google Scholar]
  11. OuallaneA.A. BahnasseA. BakaliA. TaleaM. Overview of road traffic management solutions based on IoT and AI.Procedia Comput. Sci.202219851852310.1016/j.procs.2021.12.279
    [Google Scholar]
  12. AsifM. GouqingZ. Innovative application of artificial intelligence in a multi-dimensional communication research analysis: A critical review.Discover Art. Int.2024413710.1007/s44163‑024‑00134‑3
    [Google Scholar]
  13. BhattiM.A. ZeeshanZ. SyamM. BhattiU.A. KhanA. GhadiY.Y. AlsenanS. LiY. AsifM. AfzalT. Advanced plant disease segmentation in precision agriculture using optimal dimensionality reduction with fuzzy c-means clustering and deep learning.IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.202410.1109/JSTARS.2024.3437469
    [Google Scholar]
  14. SenguptaA. MondalS. DasA. GulerS.I. A Bayesian approach to quantifying uncertainties and improving generalizability in traffic prediction models.Transp. Res., Part C Emerg. Technol.202416210458510.1016/j.trc.2024.104585
    [Google Scholar]
  15. JeongH.H. ShenY.C. JeongJ.P. OhT.T. A comprehensive survey on vehicular networking for safe and efficient driving in smart transportation: A focus on systems, protocols, and applications.Veh. Commun.20213110034910.1016/j.vehcom.2021.100349
    [Google Scholar]
  16. LiuZ. LiJ. AshrafM. SyamM.S. AsifM. AwwadE.M. Al-RazganM. BhattiU.A. Remote sensing-enhanced transfer learning approach for agricultural damage and change detection: A deep learning perspective.Big Data Research20243610044910.1016/j.bdr.2024.100449
    [Google Scholar]
  17. FanJ. WengW. TianH. WuH. ZhuF. WuJ. RGDAN: A random graph diffusion attention network for traffic prediction.Neural Netw.202417210609310.1016/j.neunet.2023.10609338228022
    [Google Scholar]
  18. JiangW. ZhangY. HanH. HuangZ. LiQ. MuJ. Mobile traffic prediction in consumer applications: A multimodal deep learning approach.IEEE Trans. Consum. Electron.20247013425343510.1109/TCE.2024.3361037
    [Google Scholar]
  19. QuY. LiZ. ZhaoX. OuJ. Towards real-world traffic prediction and data imputation: A multi-task pretraining and fine-tuning approach.Inf. Sci.202465711997210.1016/j.ins.2023.119972
    [Google Scholar]
  20. ZhangX. WenS. YanL. FengJ. XiaY. A hybrid-convolution spatial–temporal recurrent network for traffic flow prediction.Comput. J.202467123625210.1093/comjnl/bxac171
    [Google Scholar]
  21. GuarinoI. AcetoG. CiuonzoD. MontieriA. PersicoV. PescapèA. Explainable deep-learning approaches for packet-level traffic prediction of collaboration and communication mobile apps.IEEE Open J. Commun. Soc.202451299132410.1109/OJCOMS.2024.3366849
    [Google Scholar]
  22. MalikF.M. KhattakH.A. AlmogrenA. BouachirO. DinI.U. AltameemA. Performance evaluation of data dissemination protocols for connected autonomous vehicles.IEEE Access2020812689612690610.1109/ACCESS.2020.3006040
    [Google Scholar]
  23. ChenJ. ZhengL. HuY. WangW. ZhangH. HuX. Traffic flow matrix-based graph neural network with attention mechanism for traffic flow prediction.Inf. Fusion202410410214610.1016/j.inffus.2023.102146
    [Google Scholar]
  24. SuJ. CaiH. ShengZ. LiuA.X. BazA. Traffic prediction for 5G: A deep learning approach based on lightweight hybrid attention networks.Digit. Signal Process.202414610435910.1016/j.dsp.2023.104359
    [Google Scholar]
  25. XuZ. YuanJ. YuL. WangG. ZhuM. Machine learning-based traffic flow prediction and intelligent traffic management.Int. J. Comput. Sci. Inf. Technol.202421182710.62051/ijcsit.v2n1.03
    [Google Scholar]
  26. BenarmasR.B. Beghdad BeyK. A deep learning-based framework for road traffic prediction.J. Supercomput.20248056891691610.1007/s11227‑023‑05718‑x
    [Google Scholar]
  27. BharadiyaJ. Artificial intelligence in transportation systems a critical review.Am. J. Comput. Eng.202361344510.47672/ajce.1487
    [Google Scholar]
  28. BansalN. BaliR. S. Deep Learning Mechanism for Region Based Urban Traffic Flow ForecastingArtificial Intelligence of Things. ICAIoT 2023R.K. Challa, G.S. Aujla, L. Mathew, A. Kumar, M. Kalra, S.L. Shimi, G. Saini, and K. Sharma, Eds., Communications in Computer and Information Science, Cham, SwitzerlandSpringer202434235610.1007/978‑3‑031‑48781‑1_27
    [Google Scholar]
  29. MaC. ZhaoM. HuangX. ZhaoY. Optimized deep extreme learning machine for traffic prediction and autonomous vehicle lane change decision-making.Physica A202463312935510.1016/j.physa.2023.129355
    [Google Scholar]
  30. PandeyU. PathakA. KumarA. MondalS. Applications of artificial intelligence in power system operation, control and planning: A review.Clean Energy2023761199121810.1093/ce/zkad061
    [Google Scholar]
  31. BhattiU.A. TangH. WuG. MarjanS. HussainA. Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence.Int. J. Intell. Syst.20232023112810.1155/2023/8342104
    [Google Scholar]
  32. XuC. WangQ. ZhangW. SunC. Spatiotemporal ego-graph domain adaptation for traffic prediction with data missing.IEEE Trans. Intell. Transp. Syst.202411610.1109/TITS.2024.3447549
    [Google Scholar]
  33. HuX. LiuW. HuoH. An intelligent network traffic prediction method based on Butterworth filter and CNN–LSTM.Comput. Netw.202424011017210.1016/j.comnet.2024.110172
    [Google Scholar]
  34. AlmukhalfiH. NoorA. NoorT.H. Traffic management approaches using machine learning and deep learning techniques: A survey.Eng. Appl. Artif. Intell.202413310814710.1016/j.engappai.2024.108147
    [Google Scholar]
  35. KaurG. GrewalS.K. JainA. Federated learning based spatiotemporal framework for real-time traffic prediction.Wirel. Pers. Commun.2024136284986510.1007/s11277‑024‑11292‑z
    [Google Scholar]
  36. AlhaekF. LiangW. RajehT.M. JavedM.H. LiT. Learning spatial patterns and temporal dependencies for traffic accident severity prediction: A deep learning approach.Knowl. Base. Syst.202428611140610.1016/j.knosys.2024.111406
    [Google Scholar]
  37. SunL. LiuM. LiuG. ChenX. YuX. FD-TGCN: Fast and dynamic temporal graph convolution network for traffic flow prediction.Inf. Fusion202410610229110.1016/j.inffus.2024.102291
    [Google Scholar]
  38. KhalesianM. FurnoA. LeclercqL. Improving deep-learning methods for area-based traffic demand prediction via hierarchical reconciliation.Transp. Res., Part C Emerg. Technol.202415910441010.1016/j.trc.2023.104410
    [Google Scholar]
  39. LiaoH. LiuS. LiY. LiZ. WangC. LiY. LiS.E. XuC. Human observation-inspired trajectory prediction for autonomous driving in mixed-autonomy traffic environments2024 IEEE International Conference on Robotics and Automation (ICRA)Yokohama, Japan2024142121421910.1109/ICRA57147.2024.10611104
    [Google Scholar]
  40. PengY. GuoY. HaoR. XuC. Network traffic prediction with attention-based spatial–temporal graph network.Comput. Netw.202424311029610.1016/j.comnet.2024.110296
    [Google Scholar]
  41. ZhangZ. CuiP. ZhuW. Deep learning on graphs: A survey.IEEE Trans. Knowl. Data Eng.202234124927010.1109/TKDE.2020.2981333
    [Google Scholar]
  42. BerlottiM. Di GrandeS. CavalieriS. Proposal of a machine learning approach for traffic flow prediction.Sensors (Basel)2024247234810.3390/s2407234838610556
    [Google Scholar]
  43. PanY.A. GuoJ. ChenY. ChengQ. LiW. LiuY. A fundamental diagram based hybrid framework for traffic flow estimation and prediction by combining a Markovian model with deep learning.Expert Syst. Appl.202423812221910.1016/j.eswa.2023.122219
    [Google Scholar]
  44. NaM. ChoS. SolatF. NaT. LeeJ. Energy-efficient hybrid fed- erated and centralized learning for edge-based wireless traffic prediction in aerial networks.IEEE Access20241213098313099410.1109/ACCESS.2024.3458089
    [Google Scholar]
  45. HeR. ZhangC. XiaoY. LuX. ZhangS. LiuY. Deep spatio-temporal 3D dilated dense neural network for traffic flow prediction.Expert Syst. Appl.202423712139410.1016/j.eswa.2023.121394
    [Google Scholar]
  46. BansalN. BaliR.S. JakharK. ObaidatM.S. KumarN. TanwarkS. RodriguesJ.J. Htfm: Hybrid traffic-flow forecasting model for intelligent vehicular ad hoc networksIEEE International Conference on CommunicationsMontreal, QC, Canada20211610.1109/ICC42927.2021.9500627
    [Google Scholar]
  47. KongJ. FanX. ZuoM. DeveciM. JinX. ZhongK. ADCT-Net: Adaptive traffic forecasting neural network via dual-graphic cross-fused transformer.Inf. Fusion202410310212210.1016/j.inffus.2023.102122
    [Google Scholar]
  48. ZouX. ChungE. ZhouY. LongM. LamW.H.K. A feature extraction and deep learning approach for network traffic volume prediction considering detector reliability.Comput. Aided Civ. Infrastruct. Eng.202439110211910.1111/mice.13062
    [Google Scholar]
  49. LiW. ChenJ. ZhangY. SunR. XiaS. PanZ. LuoJ. Msgformer: Revolutionizing traffic flow prediction with multi-scale and gated transformer architecture.IEEE Internet Things J.2024110.1109/JIOT.2024.3465559
    [Google Scholar]
  50. ZahidM. ChenY. JamalA. MamadouC.Z. Freeway short-term travel speed prediction based on data collection time-horizons: A fast forest quantile regression approach.Sustainability (Basel)202012264610.3390/su12020646
    [Google Scholar]
  51. LiuY. ZhengH. FengX. ChenZ. Short-term traffic flow prediction with conv-lstm9th International Conference on Wireless Communications and Signal Processing (WCSP)Nanjing, China20171610.1109/WCSP.2017.8171119
    [Google Scholar]
  52. LiS. MagliE. FranciniG. GhinamoG. Deep learning based prediction of traffic peaks in mobile networks.Comput. Netw.202424011016710.1016/j.comnet.2023.110167
    [Google Scholar]
  53. HeZ. ChowC-Y. ZhangJ-D. STCNN: A spatio-temporal convolutional neural network for long-term traffic prediction20th IEEE International Conference on Mobile Data Management (MDM)Hong Kong, China201922623310.1109/MDM.2019.00‑53
    [Google Scholar]
  54. ZangD. LingJ. WeiZ. TangK. ChengJ. Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network.IEEE Trans. Intell. Transp. Syst.201920103700370910.1109/TITS.2018.2878068
    [Google Scholar]
  55. ShenK. WangH. Prediction of critical strains of flexible pavement from traffic speed deflectometer measurements.Constr. Build. Mater.202441113477010.1016/j.conbuildmat.2023.134770
    [Google Scholar]
  56. YangJ. ShiL. LeeJ. RyuI. Spatiotemporal prediction of particulate matter concentration based on traffic and meteorological data.Transp. Res. Part D Transp. Environ.202412710407010.1016/j.trd.2024.104070
    [Google Scholar]
  57. ÇevenS. AlbayrakA. Traffic accident severity prediction with ensemble learning methods.Comput. Electr. Eng.202411410910110.1016/j.compeleceng.2024.109101
    [Google Scholar]
  58. XuQ. PangY. ZhouX. LiuY. Pigat: Physics-informed graph attention transformer for air traffic state prediction.IEEE Trans. Intell. Transp. Syst.2024259125611257710.1109/TITS.2024.3386128
    [Google Scholar]
  59. YangH. LiZ. QiY. Predicting traffic propagation flow in urban road network with multi-graph convolutional network.Complex Intell. Syst.2024101233510.1007/s40747‑023‑01099‑z
    [Google Scholar]
  60. LuoY. ZhengJ. WangX. TaoY. JiangX. GT-LSTM: A spatio-temporal ensemble network for traffic flow prediction.Neural Netw.202417125126210.1016/j.neunet.2023.12.01638103435
    [Google Scholar]
  61. AlkarimA.S. Al-GhamdiA.S.A-M. RagabM. Ensemble learning-based algorithms for traffic flow prediction in smart traffic systems.Eng. Technol. Appl. Sci. Res.2024142130901309410.48084/etasr.6767
    [Google Scholar]
  62. RogerS. Botella-MascarellC. Martín-SacristánD. García-RogerD. MonserratJ.F. SvenssonT. Sustainable mobility in b5g/6g: V2x technology trends and use cases.IEEE Open J. Veh. Technol.2024545947210.1109/OJVT.2024.3375451
    [Google Scholar]
  63. ChauhanN.S. KumarN. Confined attention mechanism enabled recurrent neural network framework to improve traffic flow prediction.Eng. Appl. Artif. Intell.202413610879110.1016/j.engappai.2024.108791
    [Google Scholar]
  64. FengR. ChenM. SongY. Learning traffic as videos: Short-term traffic flow prediction using mixed-pointwise convolution and channel attention mechanism.Expert Syst. Appl.202424012246810.1016/j.eswa.2023.122468
    [Google Scholar]
  65. NaheliyaB. RedhuP. KumarK. MFOA-Bi-LSTM: An optimized bidirectional long short-term memory model for short-term traffic flow prediction.Physica A202463412944810.1016/j.physa.2023.129448
    [Google Scholar]
  66. Al-HuthaifiR. LiT. Al-HudaZ. LiC. FedAGAT: Real-time traffic flow prediction based on federated community and adaptive graph attention network.Inf. Sci.202466712048210.1016/j.ins.2024.120482
    [Google Scholar]
  67. YangP. ChenZ. SuG. LeiH. WangB. Enhancing traffic flow monitoring with machine learning integration on cloud data warehousing.Appl. Comput. Eng.202477238244
    [Google Scholar]
  68. XiaD. WangB. LiH. LiY. ZhangZ. A distributed spatial–temporal weighted model on MapReduce for short-term traffic flow forecasting.Neurocomputing201617924626310.1016/j.neucom.2015.12.013
    [Google Scholar]
  69. ShuW. CaiK. XiongN.N. A short-term traffic flow prediction model based on an improved gate recurrent unit neural network.IEEE Trans. Intell. Transp. Syst.202189166541666510.1109/TITS.2021.3094659
    [Google Scholar]
  70. MaC. DaiG. ZhouJ. Short-term traffic flow prediction for urban road sections based on time series analysis and lstm bilstm method.IEEE Trans. Intell. Transp. Syst.20222365615562410.1109/TITS.2021.3055258
    [Google Scholar]
  71. LuS. ZhangQ. ChenG. SengD. A combined method for short-term traffic flow prediction based on recurrent neural network.Alex. Eng. J.2021601879410.1016/j.aej.2020.06.008
    [Google Scholar]
  72. WangZ. SuX. DingZ. Long-term traffic prediction based on lstm encoder-decoder architecture.IEEE Trans. Intell. Transp. Syst.202122106561657110.1109/TITS.2020.2995546
    [Google Scholar]
  73. PengH. DuB. LiuM. LiuM. JiS. WangS. ZhangX. HeL. Dynamic graph convolutional network for long-term traffic flow prediction with reinforcement learning.Inf. Sci.202157840141610.1016/j.ins.2021.07.007
    [Google Scholar]
  74. ZhengC. FanX. WangC. QiJ. Gman: A graph multi-attention network for traffic predictionProc. AAAI Conf. Artif. Intell.20203411234124110.1609/aaai.v34i01.5477
    [Google Scholar]
  75. BogaertsT. MasegosaA.D. Angarita-ZapataJ.S. OnievaE. HellinckxP. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data.Transp. Res., Part C Emerg. Technol.2020112627710.1016/j.trc.2020.01.010
    [Google Scholar]
  76. LiuC. YangS. XuQ. LiZ. LongC. LiZ. ZhaoR. Spatial- temporal large language model for traffic predictionarXiv202410.48550/arXiv.2401.10134
    [Google Scholar]
  77. LiH. LiuJ. HanS. ZhouJ. ZhangT. Philip ChenC.L. STFGCN: Spatial–temporal fusion graph convolutional network for traffic prediction.Expert Syst. Appl.202425512464810.1016/j.eswa.2024.124648
    [Google Scholar]
  78. RenY. ChenY. LiuS. WangB. YuH. CuiZ. Tpllm: A traffic prediction framework based on pretrained large language modelsarXiv2024
    [Google Scholar]
  79. LiuY. RasouliS. WongM. FengT. HuangT. RT-GCN: Gaussian-based spatiotemporal graph convolutional network for robust traffic prediction.Inf. Fusion202410210207810.1016/j.inffus.2023.102078
    [Google Scholar]
  80. LiZ. WangX. YangK. An effective self-attention-based hybrid model for short-term traffic flow prediction.Adv. Civ. Eng.20232023111010.1155/2023/9308576
    [Google Scholar]
  81. RambabuA. SujanB. A multi-stream feature fusion approach for traffic prediction.Traffic20242407
    [Google Scholar]
  82. LiW. LiuX. TaoW. ZhangL. ZouJ. PanY. PanZ. Location and time embedded feature representation for spatiotemporal traffic prediction.Expert Syst. Appl.202423912244910.1016/j.eswa.2023.122449
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558351567241029071333
Loading
/content/journals/rascs/10.2174/0126662558351567241029071333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test