Skip to content
2000
Volume 19, Issue 2
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

This review offers a detailed analysis of recent advancements in Micro-Electro-Mechanical Systems (MEMS) technology and its impact on telecommunication applications. MEMS devices have undergone significant evolution, with enhancements in performance and functionality crucial for modern telecommunication systems. The review covers various advancements, including developing MEMS-based switches, filters, and oscillators—key developments with sophisticated features, including the equipment to enable modern, cost-effective communication networks. Infrastructure equipment, such as passive elements, tunable networks, antennas, ., with radio frequency (RF) as well as optical devices and mobile communication devices, ., the mobile sensors and actuators, are the two main areas encompassing this field of application because of improved performance and quality of user experience. These components are essential for managing high-frequency signals, improving signal quality, and supporting the demands of increasingly complex telecommunication networks. Recent innovations have enabled MEMS devices to operate with higher precision and reliability, making them integral to the rollout of 5G networks and other emerging technologies. The review also addresses the challenges faced in the field, such as issues related to device miniaturization, cost-effectiveness, and the need for seamless integration with existing infrastructure. By examining these advancements and challenges, this review provides a comprehensive overview of the current state of MEMS technology in telecommunications. It aims to serve as a valuable resource for researchers, engineers, and industry professionals seeking to understand MEMS devices' recent progress and future potential in enhancing telecommunication systems. The insights provided herein are intended to guide ongoing research and development efforts, ultimately contributing to the continued advancement of telecommunication technologies.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558342193241211063716
2024-12-30
2026-01-08
Loading full text...

Full text loading...

References

  1. BeheraB. NemadeH.B. Recent developments of piezoelectric motors with diverse operating principles.ISSS J. Micro Smart Syst.20176217318510.1007/s41683‑017‑0015‑x
    [Google Scholar]
  2. el HakM.G. The MEMS Handbook - MEMS Applications.CRC Press2006
    [Google Scholar]
  3. BeheraB. NemadeH.B. TrivediS. Modelling and finite element simulation of a dual friction-drive saw motor using flat slider2016 IEEE International Ultrasonics Symposium (IUS)20161410.1109/ULTSYM.2016.7728378
    [Google Scholar]
  4. KuwanoH. Mems for telecommunication systemsMHS’96 Proceedings of the Seventh International Symposium on Micro Machine and Human Science19962128
    [Google Scholar]
  5. ChangC.P. Mems for telecommunications: Devices and reliabilityProceedings of the IEEE 2003 Custom Integrated Circuits Conference2003199206
    [Google Scholar]
  6. BhatN. MEMS for RF applications.IETE Tech. Rev.200421213313610.1080/02564602.2004.11417139
    [Google Scholar]
  7. BeheraB. NemadeH.B. Investigating translational motion of a dual friction-drive surface acoustic wave motor through modeling and finite element simulation.Simulation201995211712510.1177/0037549718778770
    [Google Scholar]
  8. UttamchandaniD. Handbook of MEMS for Wireless and Mobile Applications.Cambridge, UK: Woodhead Publishing (Elsevier)201310.1533/9780857098610
    [Google Scholar]
  9. EversonL. BiswasD. PanwarM. RodopoulosD. AcharyyaA. KimC.H. Van HoofC. KonijnenburgM. Van HelleputteN. Biometricnet: Deep learning based biometric identification using wrist-worn PPG2018 IEEE International Symposium on Circuits and Systems (ISCAS) May 20181510.1109/ISCAS.2018.8350983
    [Google Scholar]
  10. BeheraB. Design and investigation of a dual friction-drive- based linbo3 piezoelectric actuator employing a cylindrical shaft as slider.IEEE Sens. J.20191924119801198710.1109/JSEN.2019.2938246
    [Google Scholar]
  11. WangZ. ZouQ. SongQ. TaoJ. The era of silicon MEMS microphone and look beyond Proc. 2015 18th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS)Anchorage, AK, USA2015375378
    [Google Scholar]
  12. BiswasS. GogoiA.K. Design issues of piezoresistive MEMS accelerometer for an application specific medical diagnostic system.IETE Tech. Rev.2016331111610.1080/02564602.2015.1065713
    [Google Scholar]
  13. SantL. GagglR. BachE. BuffaC. de MilleriN. StraeussniggD. WiesbauerA. MEMS microphones: Concept and design for mobile applications: Advances in analog circuit design.Low-Power Analog Techniques, Sensors for Mobile Devices, and Energy Efficient Amplifiers.Springer2018155174
    [Google Scholar]
  14. OzdoganM. TowfighianS. MilesR.N. Modeling and characterising a pull-in free mems microphone.IEEE Sens. J.202020126314632310.1109/JSEN.2020.2976527
    [Google Scholar]
  15. IzquierdoA. del ValL. VillacortaJ.J. ZhenW. SchererS. FangZ. Izquierdo-FuenteA. Feasibility of discriminating uav propellers noise from distress signals to locate people in enclosed environments using mems microphone arrays.Sensors202020359710.3390/s2003059731973156
    [Google Scholar]
  16. ChengM.C. HuangW.S. HuangS.R.S. A silicon microspeaker for hearing instruments.J. Micromech. Microeng.200414785986610.1088/0960‑1317/14/7/004
    [Google Scholar]
  17. KwonJ.H. HwangS.M. KimK.S. Development of slim rectangular microspeaker used for mini multimedia phones.IEEE Trans. Magn.20074362704270610.1109/TMAG.2007.893784
    [Google Scholar]
  18. ShahosseiniI. LefeuvreE. MoulinJ. MartincicE. WoytasikM. LemarquandG. Optimization and microfabrication of high-performance silicon-based MEMS micro speaker.IEEE Sens. J.201313127328410.1109/JSEN.2012.2213807
    [Google Scholar]
  19. ShahosseiniI. LefeuvreE. MoulinJ. WoytasikM. MartincicE. Electromagnetic mems micro speaker for portable electronic devices.Microsystem Technologies20132013Springer Verlag10
    [Google Scholar]
  20. StoppelF. Ma¨nnchenA. NiekielF. BeerD. GieseT. WagnerB. “New integrated full-range mems speaker for in-ear applications”, In 2018 IEEE Micro Electro Mechanical Systems.MEMS201810681071
    [Google Scholar]
  21. WangH. LiM. YuY. ChenZ. DingY. JiangH. XieH. A piezoelectric mems loudspeaker based on ceramic PZT2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems Eurosensors XXXIIIBerlin, Germany201985786010.1109/TRANSDUCERS.2019.8808528
    [Google Scholar]
  22. ChengH.H. LoS.C. HuangZ.R. WangY.J. WuM. FangW. On the design of piezoelectric MEMS microspeaker for the sound pressure level enhancement.Sens. Actuators A Phys.202030611196010.1016/j.sna.2020.111960
    [Google Scholar]
  23. TsengS. LoS. WangY. LinS. WuM. FangW. Sound pressure and low-frequency enhancement using novel PZT mems micro speaker design2020 IEEE 33rd International Conference on Micro Electro Mechanical SystemsBritish Columbia, Canada2020546549
    [Google Scholar]
  24. KaiserB. LangaS. EhrigL. StolzM. SchenkH. ConradH. SchenkH. SchimmanzK. SchuffenhauerD. Concept and proof for an all-silicon MEMS micro speaker utilizing air chambers.Microsyst. Nanoeng.2019514310.1038/s41378‑019‑0095‑931636932
    [Google Scholar]
  25. AliW.R. Aditi, and M. Prasad, “Design and modeling of piezoelectric-AlN-based acoustic sensor for sound pressure level measurements”.IETE Tech. Rev.202340678379210.1080/02564602.2023.2169778
    [Google Scholar]
  26. NihtianovS. LuqueA. Smart sensors and MEMS: Intelligent devices and microsystems for industrial applications.Cambridge, UK: Woodhead Publishing2014
    [Google Scholar]
  27. AydemirA. AkinT. Self-packaged three-axis capacitive mems accelerometer2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS)2020777780
    [Google Scholar]
  28. JoyA.P. KanyginM. BahreyniB. A piezo-avalanche accelerometer.J. Microelectromech. Syst.202029214414710.1109/JMEMS.2020.2968069
    [Google Scholar]
  29. YanG. ZhuY. WangC. ZhangR. ChenZ. LiuX. WangY.Y. Integrated bulk-micromachined gyroscope using deep trench isolation technology17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS, Technical DigestMaastricht, Netherlands2004605608
    [Google Scholar]
  30. LoburM. HolovatyyA. MotykaI. Development of the mathematical model of spring suspension system for microelectromechanical angular velocity sensor (mems gyroscope) 2010 Proceedings of VIth International Conference on Perspective Technologies and Methods in MEMS DesignLviv-Polyana, Ukraine20109598
    [Google Scholar]
  31. PrikhodkoI.P. MerrittC. GregoryJ.A. GeenJ.A. ChangJ. BergeronJ. ClarkW. JudyM.W. Continuous self-calibration cancelling drive-induced errors in mems vibratory gyroscopesProceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2015)Anchorage AK, USA20153538
    [Google Scholar]
  32. BuffaC. MEMS Lorentz force magnetometers: From specifications to product.Springer201810.1007/978‑3‑319‑59412‑5
    [Google Scholar]
  33. SungF. FangS. ChienY. An experimental study of mems-based magnetometers on android mobile phones2014 IEEE International Conference on Consumer ElectronicsTaiwan201422722810.1109/ICCE‑TW.2014.6904071
    [Google Scholar]
  34. SongC. WenK. Integration design of wide-dynamic-range mems magnetometer and oscillator2018 IEEE International Conference on Semiconductor Electronics (ICSE)Kuala Lumpur, Malaysia2018172010.1109/SMELEC.2018.8481282
    [Google Scholar]
  35. LiangH. LiuS. XiongB. Torsional mems magnetometer with vertically staggered combs for in-plane magnetic field sensing 2020 IEEE 33rd International Conference on Micro Electro Mechanical SystemsSeoul, South Korea202011711174
    [Google Scholar]
  36. ErenH. SandorL.D. Fringe-effect capacitive proximity sensors for tamper proof enclosuresSensors for Industry ConferenceHouston, TX, USA20052226
    [Google Scholar]
  37. LeeJ. YehS. FangW. Monolithic/vertical integration of piezo-resistive tactile sensor and inductive proximity sensor using cmos-mems technologyIEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)2019826829
    [Google Scholar]
  38. GaoS. ArcosV. NathanA. Piezoelectric vs. capacitive based force sensing in capacitive touch panels.IEEE Access201643769377410.1109/ACCESS.2016.2591535
    [Google Scholar]
  39. YueS. QiuY. MoussaW.A. A multi-axis tactile sensor array for touchscreen applications.J. Microelectromech. Syst.201827217918910.1109/JMEMS.2017.2778572
    [Google Scholar]
  40. CassetF. le RhunG. NeffB. DeslogesB. DieppedaleC. FangetS. Low voltage haptic slider built using sol-gel thin-film PZT actuators reported on glassIEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS)Seoul, South Korea2019990993
    [Google Scholar]
  41. MukhopadhyayS. BeheraB. KumarJ. A brief review on the recent evolution in piezoelectric linear ultrasonic motors.Engineering Research Express20213404200310.1088/2631‑8695/ac3b73
    [Google Scholar]
  42. MukhopadhyayS. KumarJ. BeheraB. Low-operating voltage-based piezoelectric ultrasonic actuator for tactile system applications.Ferroelectrics2021585116317710.1080/00150193.2021.1991223
    [Google Scholar]
  43. MirS. ParrainF. CharlotB. GalyN. CourtoisB. A CMOS compatible micromachined tactile fingerprint sensorProceedings of SPIE - The International Society for Optical Engineering, San Jose, CA, USA, 2002, Volume 4755, pp. 97-104,10.1117/12.462857
    [Google Scholar]
  44. SatoN. ShigematsuS. MorimuraH. YanoM. KudouK. KameiT. MachidaK. Novel surface structure and its fabrication process for the mems fingerprint sensor.IEEE Trans. Electron Dev.20055251026103210.1109/TED.2005.846342
    [Google Scholar]
  45. JangK. KimK. JeongK. Ultrathin contact-imaging camera for fingerprint imaging using microlens array and multiple block layers2018 International Conference on Optical MEMS and NanophotonicsLausanne, Switzerland20181210.1109/OMN.2018.8454530
    [Google Scholar]
  46. MoraesJ.L. RochaM.X. VasconcelosG.G. Vasconcelos FilhoJ.E. De AlbuquerqueV.H.C. AlexandriaA.R. Advances in photopletysmography signal analysis for biomedical applications.Sensors2018186189410.3390/s1806189429890749
    [Google Scholar]
  47. LeeY.K. JoJ. ShinH.S. Development and evaluation of a wristwatch-type photoplethysmography array sensor module.IEEE Sens. J.20131351459146310.1109/JSEN.2012.2235424
    [Google Scholar]
  48. KanoM. IshiiM. KandaK. FujitaT. MaenakaK. KasaiK. HiguchiK. Reflective photoplethysmography sensor with a ring-shaped photodiode2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC)Seoul, South Korea20122058206110.1109/ICSMC.2012.6378042
    [Google Scholar]
  49. KanoM. SatoY. KandaK. FujitaT. MaenakaK. KasaiK. HiguchiK. Fabrication of reflectance pulse oximeter with a ring-shaped photodiode2013 IEEE International Conference on Systems, Man, and CyberneticsManchester, UK20133771377410.1109/SMC.2013.643
    [Google Scholar]
  50. RyuG.S. YouJ. KostianovskiiV. LeeE.B. KimY. ParkC. NohY.Y. Flexible and printed ppg sensors for estimation of drowsiness.IEEE Trans. Electron Dev.20186572997300410.1109/TED.2018.2833477
    [Google Scholar]
  51. BoukhaymaA. CaizzoneA. EnzC. An ultra-low power ppg and mm- resolution of ppd- based cmos chip towards all-in-one photonic sensors.IEEE Sens. J.20191924118581186610.1109/JSEN.2019.2939479
    [Google Scholar]
  52. LeeJ. MatsumuraK. YamakoshiK. RolfeP. TanakaS. YamakoshiT. Comparison between red, green and blue light reflection photoplethysmography for heart rate monitoring during motion2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan201317241727
    [Google Scholar]
  53. YangK. HeC. FangJ. CuiX. SunH. YangY. ZuoC. Advanced RF filters for wireless communications.Chip20232410005810.1016/j.chip.2023.100058
    [Google Scholar]
  54. AhmedN. ChowdhuryA. SinharayA. MukhopadhyayS. GhoseA. ChakravartyT. A personalized on-line calibration for photoplethysmograph based wrist wearable sensor. 2017 Global Wireless Summit.Cape Town, South AfricaGWS201715https://ieeexplore.ieee.org/document/8300498
    [Google Scholar]
  55. HwangC. YangS. ParkJ. JeongK. Optical low angle pass filter for high-resolution robust photoplethysmography monitor 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS)2017530533
    [Google Scholar]
  56. TurukB.K. BeheraB. A brief investigation of one-port SAW resonator for the application in communication systems.Engineering Research Express20246202230210.1088/2631‑8695/ad4234
    [Google Scholar]
  57. LiuC. Foundations of MEMS.Evanston: McCormick School of Engineering, Northwestern University, Pentice Hall2012
    [Google Scholar]
  58. KhoshnoudF. de SilvaC.W. Recent advances in MEMS sensor technology-mechanical applications.IEEE Instrum. Meas. Mag.2012152142410.1109/MIM.2012.6174574
    [Google Scholar]
  59. LeeH.G. ParkJ.Y. BuJ.U. YeeY. MEMS technology for advanced telecommunication applications.t. J. High Speed Electron. Syst.200212221523310.1142/S0129156402001162
    [Google Scholar]
  60. ZhangY. GongZ. GuoX. LiuZ. A high linearity SP12T RF MEMS switch using parallel dual-cantilevers for 5G and beyond applications.IEEE Electron Device Lett.20183910110.1109/LED.2018.2867841
    [Google Scholar]
  61. TanakaM. An industrial and applied review of new MEMS devices features.Microelectron. Eng.2007845–81341134410.1016/j.mee.2007.01.232
    [Google Scholar]
  62. HossainN. Al MahmudM.Z. HossainA. RahmanM.K. IslamM.S. TasnimR. MobarakM.H. Advances of materials science in MEMS applications: A review.Results Eng.20242210211510.1016/j.rineng.2024.102115
    [Google Scholar]
  63. HajareR. ReddyV. MEMS-based sensors – A comprehensive review of commonly used fabrication techniquesMater Today Proc202249Part 372073010.1016/j.matpr.2021.05.223
    [Google Scholar]
  64. WenH. Trends and frontiers of MEMS.Sens. Actuators A Phys.20071361626710.1016/j.sna.2007.02.001
    [Google Scholar]
  65. El-SharkawyM. ShayestehS. RizkallaM. Integrating NEMS/MEMS with IoT applications into an innovative ECE senior elective course 2017 IEEE Frontiers in Education Conference (FIE)Indianapolis, IN, USA20171510.1109/FIE.2017.8190447
    [Google Scholar]
  66. PodderI. FischlT. BubU. Artificial intelligence applications for MEMS-based sensors and manufacturing process optimization.Telecom20234116519710.3390/telecom4010011
    [Google Scholar]
  67. XuY. LiuS. HeC. WuH. ChengL. YanG. HuangQ. Reliability of MEMS inertial devices in mechanical and thermal environments: A review.Heliyon2024105e2748110.1016/j.heliyon.2024.e27481
    [Google Scholar]
  68. LiuS. DuX.H. ZhuM.J. LiuD. Long-term stability enabling technology of silicon-based piezoresistive MEMS pressure sensor 21st Annual Conference and 10th International Conference of Chinese Society of Micro-Nano Technology2019Wuhan, China.10.1088/1742‑6596/1520/1/012009
    [Google Scholar]
  69. BornschleglM. SprengS. KreitleinS. BregullaM. FrankelJ. Determination of the prospective energy consumption of manufacturing technologies with methods-energy measurement (MEM4th International Electric Drives Production Conference (EDPC)Nuremberg, Germany20141710.1109/EDPC.2014.6984427
    [Google Scholar]
  70. Recycling and disposal of MEMS devices: Challenges and solutions.Available from: https://www.mems-exchange.org/MEMS/challenges.html
/content/journals/rascs/10.2174/0126662558342193241211063716
Loading
/content/journals/rascs/10.2174/0126662558342193241211063716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test