Skip to content
2000
Volume 18, Issue 5
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Objective

This study analyzes the transmission of the current signal of an electronic analgesic apparatus in arm muscles and provides a theoretical foundation for electrical stimulation analgesia.

Methods

By combining human anatomy and tissue structure, a numerical simulation-based finite element model of the electronic analgesic apparatus is established using a frustum, cylinder, and ellipsoid as geometric entities in COMSOL Multiphysics 5.5. In the frequency domain environment, the transmission mechanism of the signal in the arm is analyzed by inputting current signals of 100 kHz, 1 MHz, and 10 MHz with an amplitude of ±20 mA.

Results

With a continuous increase in carrier frequency, the effect of skin tissue becomes increasingly clear, and the signal becomes increasingly concentrated in the part of the skin that contacts the electrode. Moreover, diffusion inside the volume conductor loses consistency. At 100 kHz, as the communication distance from the electrode center gradually increases, the signal spreads more evenly within the arm.

Conclusion

In the process of implementing a muscle soreness treatment using the electronic analgesic apparatus, a higher communication frequency makes it more difficult for the signal to enter the interior of the body and degrade the consistency of the signal. Therefore, the signal electrode should be placed as close as possible to the analgesic target area during the implementation of electric current analgesia.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558337431241129093951
2024-12-10
2025-10-02
Loading full text...

Full text loading...

References

  1. KoG.W.Y. ClarksonC. The effectiveness of acupuncture for pain reduction in delayed-onset muscle soreness: A systematic review.Acupunct. Med.2020382637410.1177/0964528419887978 31793352
    [Google Scholar]
  2. GuoJ. LiL. GongY. ZhuR. XuJ. ZouJ. ChenX. Massage alleviates delayed onset muscle soreness after strenuous exercise: A systematic review and meta-analysis.Front. Physiol.2017874710.3389/fphys.2017.00747 29021762
    [Google Scholar]
  3. RanchordasM.K. RogersonD. SoltaniH. CostelloJ.T. Antioxidants for preventing and reducing muscle soreness after exercise: A Cochrane systematic review.Br. J. Sports Med.2020542747810.1136/bjsports‑2018‑099599 30054340
    [Google Scholar]
  4. MizumuraK. TaguchiT. Delayed onset muscle soreness: Involvement of neurotrophic factors.J. Physiol. Sci.2016661435210.1007/s12576‑015‑0397‑0 26467448
    [Google Scholar]
  5. MacIntyreD.L. ReidW.D. McKenzieD.C. Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications.Sports Med.1995201244010.2165/00007256‑199520010‑00003 7481277
    [Google Scholar]
  6. GivliS. Contraction induced muscle injury: Towards personalized training and recovery programs.Ann. Biomed. Eng.201543238840310.1007/s10439‑014‑1173‑7 25352440
    [Google Scholar]
  7. BaoQ.Y. ChangP.C. CentenoM.V. FarmerM.A. BalikiM. ProcissiD. ZhangW. ApkarianA.V. Reversal of neuropathic pain is associated with corticostriatal functional reorganization after nerve repair in the spared nerve injury model.Pain2022163101929193810.1097/j.pain.0000000000002590 35082247
    [Google Scholar]
  8. YoungJ.L. SnodgrassS.J. ClelandJ.A. RhonD.I. Timing of physical therapy for individuals with patellofemoral pain and the influence on healthcare use, costs and recurrence rates: An observational study.BMC Health Serv. Res.202121175110.1186/s12913‑021‑06768‑8 34320969
    [Google Scholar]
  9. FreburgerJ.K. HolmesG.M. Physical therapy use by community-based older people.Phys. Ther.2005851193310.1093/ptj/85.1.19 15623359
    [Google Scholar]
  10. Jones PullinsM. BoggessK. PorterT.F. Aspirin in pregnancy.Obstet. Gynecol.2023142613331340 37917941
    [Google Scholar]
  11. CampbellR. NelsonM. McNeillJ. Outcomes following aspirin discontinuation in chronic aspirin users: A study-level meta-analysis.Heart2023109A25A26
    [Google Scholar]
  12. HeN. YingY. ChengY. Amoxicillin-clavulanate vs amoxicillin for pediatric acute sinusitis.JAMA2024331325725810.1001/jama.2023.23642 38227039
    [Google Scholar]
  13. SavageT.J. KronmanM.P. HuybrechtsK.F. Amoxicillin-clavulanate vs amoxicillin for pediatric acute sinusitis-reply.JAMA2024331325825910.1001/jama.2023.23645 38227036
    [Google Scholar]
  14. SitaulaS. ShahB.K. KharelS. YadavA. PoudelN. ShresthaB. Amoxicillin-induced bullous erythema multiforme: A case report.Ann. Med. Surg.202486152252410.1097/MS9.0000000000001513 38222713
    [Google Scholar]
  15. HeJ. WeiX. WuM. SongZ. JiangL. ZhangW. Analgesic effect of perineural injection of BoNT/A on neuropathic pain induced by chronic constriction injury of sciatic nerve in rats.Neurochem. Res.20234872161217410.1007/s11064‑023‑03893‑0 36828984
    [Google Scholar]
  16. WuP.Y. CaceresA.I. ChenJ. SokoloffJ. HuangM. BahtG.S. NackleyA.G. JordtS.E. TerrandoN. Vagus nerve stimulation rescues persistent pain following orthopedic surgery in adult mice.Pain20241658e80e9210.1097/j.pain.0000000000003181 38422485
    [Google Scholar]
  17. ZhuJ. HuangF. HuY. QiaoW. GuanY. ZhangZ.J. LiuS. LiuY. Non-coding RNAs regulate spinal cord injury-related neuropathic pain via neuroinflammation.J. Inflamm. Res.2023162477248910.2147/JIR.S413264 37334347
    [Google Scholar]
  18. SimpsonA.C. Challenges and opportunities for bioactive compound and antibiotic discovery in deep space.J. Indian Inst. Sci.2023103381983210.1007/s41745‑023‑00385‑6
    [Google Scholar]
  19. ShahU. PatelN. PatelM. RohitS. SolankiN. PatelA. PatelS. PatelV. PatelR. JawarkarR.D. Computational exploration of naturally occurring flavonoids as tgf-β inhibitors in breast cancer: Insights from docking and molecular dynamics simulations and in vitro cytotoxicity study.Chem. Biodivers.2024216e20230190310.1002/cbdv.202301903 38623839
    [Google Scholar]
  20. SteinD.J. Massage acupuncture, moxibustion, and other forms of complementary and alternative medicine in inflammatory bowel disease.Gastroenterol. Clin. North Am.201746487588010.1016/j.gtc.2017.08.015 29173528
    [Google Scholar]
  21. ZhangJun YangLiping Treatment of scapulohumeral periarthritis by metal hook fishing-like needling technique combined with Tuina manipulation.Acupunct. Res.2020458667670
    [Google Scholar]
  22. ZhangS. QinY. WangJ. YuY. WuL. ZhangT. Noninvasive electrical stimulation neuromodulation and digital brain technology: A review.Biomedicines2023116151310.3390/biomedicines11061513 37371609
    [Google Scholar]
  23. MangoldS. KellerT. CurtA. DietzV. Transcutaneous functional electrical stimulation for grasping in subjects with cervical spinal cord injury.Spinal Cord200543111310.1038/sj.sc.3101644 15289804
    [Google Scholar]
  24. ShechterA. SerefogluE.C. GollanT. SpringerS. MeiryG. AppelB. GruenwaldI. Transcutaneous functional electrical stimulation-a novel therapy for premature ejaculation: Results of a proof of concept study.Int. J. Impot. Res.202032444044510.1038/s41443‑019‑0207‑y 31570825
    [Google Scholar]
  25. ChoiY.A. KimY. ShinH.I. Pilot study of feasibility and effect of anodal transcutaneous spinal direct current stimulation on chronic neuropathic pain after spinal cord injury.Spinal Cord201957646147010.1038/s41393‑019‑0244‑x 30700853
    [Google Scholar]
  26. MakPengUn M.I. Vai, Min Du, M.I. Vai, and M. Du, “Quasi-static modeling of human limb for intra-body communications with experiments”.IEEE Trans. Inf. Technol. Biomed.201115687087610.1109/TITB.2011.2161093 21724520
    [Google Scholar]
  27. GabrielC. GabrielS. CorthoutE. The dielectric properties of biological tissues: I. Literature survey.Phys. Med. Biol.199641112231224910.1088/0031‑9155/41/11/001 8938024
    [Google Scholar]
  28. GabrielS. LauR.W. GabrielC. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz.Phys. Med. Biol.199641112251226910.1088/0031‑9155/41/11/002 8938025
    [Google Scholar]
  29. PlonseyR. HeppnerD.B. Considerations of quasi-stationarity in electrophysiological systems.Bull. Math. Biophys.196729465766410.1007/BF02476917 5582145
    [Google Scholar]
  30. SeoH. KimH.I. JunS.C. The effect of a transcranial channel as a skull/brain interface in high-definition transcranial direct current stimulation-a computational study.Sci. Rep.2017714061210.1038/srep40612 28084429
    [Google Scholar]
  31. GrossmanN. BonoD. DedicN. KodandaramaiahS.B. RudenkoA. SukH.J. CassaraA.M. NeufeldE. KusterN. TsaiL.H. Pascual-LeoneA. BoydenE.S. Noninvasive deep brain stimulation via temporally interfering electric fields.Cell2017169610291041.e1610.1016/j.cell.2017.05.024 28575667
    [Google Scholar]
  32. ZhangS. PunS.H. MakP.U. QinY.P. LiuY.H. GaoY.M. VaiM.I. Experimental verifications of low frequency path gain (PG) channel modeling for implantable medical device (IMD).IEEE Access20197119341194510.1109/ACCESS.2019.2892130
    [Google Scholar]
  33. WegmuellerM.S. Intra-body communication for biomedical sensor networksPhD dissertation, Swiss Federal Institude of Technology Zurich (ETH)2007
    [Google Scholar]
  34. WegmuellerM.S. HuclovaS. FroehlichJ. OberleM. FelberN. KusterN. FichtnerW. Galvanic coupling enabling wireless implant communications.IEEE Trans. Instrum. Meas.20095882618262510.1109/TIM.2009.2015639
    [Google Scholar]
  35. KuangJ. QinY. ZhangS. Performance analysis of semi-refined digital forearm modeling and simplified forearm model in electromagnetic simulation.Recent Pat. Eng.2024189e06102322183510.2174/0118722121269816230926120046
    [Google Scholar]
  36. ZhangS. LiuY.H. QinY.P. KuangJ.M. YangJ.N. LiJ.W. WangJ.J. ZhangT. ZouX.M. Experimental verification of human body communication path gain channel modeling for muscular-tissue characteristics.IEEE Access2019712276912278310.1109/ACCESS.2019.2937945
    [Google Scholar]
  37. MakarovS.N. NoetscherG.M. YanamadalaJ. PiazzaM.W. LouieS. ProkopA. NazarianA. NummenmaaA. Virtual human models for electromagnetic studies and their applications.IEEE Rev. Biomed. Eng.2017109512110.1109/RBME.2017.2722420 28682265
    [Google Scholar]
  38. WuT. TanL. ShaoQ. ZhangC. ZhaoC. LiY. ConilE. HadjemA. WiartJ. LuB. XiaoL. WangN. XieY. ZhangS. Chinese adult anatomical models and the application in evaluation of RF exposures.Phys. Med. Biol.20115672075208910.1088/0031‑9155/56/7/011 21386138
    [Google Scholar]
  39. XuJ. ZhangM. KuangJ. QinY. ZhangS. Modeling and analysis of cancer electrothermic therapy technique based on a digital arm.Recent Pat. Eng.2025193e04122322418810.2174/0118722121267419231118150634
    [Google Scholar]
  40. Hernandez-ArandaD. PanzaJ. EiggM. GreensteinM. LiD. O’BrienJ. WarrenG. DoyleP.J. Analgesia using transcutaneous electric nerve stimulation in office bladder chemodenervation, a randomized controlled trial.Urogynecology202430549850410.1097/SPV.0000000000001424 37930264
    [Google Scholar]
  41. Hernandez-ArandaD. PanzaJ. EiggM. GreensteinM. LiD. O’BrienJ. WarrenG. DoyleP.J. Analgesia using transcutaneous electric nerve stimulation in office bladder chemodenervation, a randomized controlled trial.Obstet. Gynecol. Surv.202479846346410.1097/OGX.0000000000001306
    [Google Scholar]
  42. KoJ.C. MurilloC. WeilA.B. KreuzerM. MooreG.E. Dexmedetomidine sedation in dogs: Impact on electroencephalography, behavior, analgesia, and antagonism with atipamezole.Vet. Sci.20241127410.3390/vetsci11020074 38393092
    [Google Scholar]
  43. ShahS. GodhardtL. SpoffordC. Acupuncture and postoperative pain reduction.Curr. Pain Headache Rep.202226645345810.1007/s11916‑022‑01048‑4 35482244
    [Google Scholar]
  44. KayeA.D. PlaisanceT.R. SmithS.A. RaglandA.R. AlfredM.J. NguyenC.G. ChamiA.A. KatariaS. DufreneK. ShekoohiS. RobinsonC.L. Peripheral nerve stimulation in postoperative analgesia: A narrative review.Curr. Pain Headache Rep.202428769169810.1007/s11916‑024‑01257‑z 38642233
    [Google Scholar]
  45. SandraD.A. OlsonJ.A. LangerE.J. RoyM. Presenting a sham treatment as personalised increases the placebo effect in a randomised controlled trial.eLife202312e8469110.7554/eLife.84691 37405829
    [Google Scholar]
  46. NoetscherG.M. YanamadalaJ. MakarovS.N. Pascual-LeoneA. Comparison of cephalic and extracephalic montages for transcranial direct current stimulation-A numerical study.IEEE Trans. Biomed. Eng.20146192488249810.1109/TBME.2014.2322774 25014947
    [Google Scholar]
  47. LiuS. WangZ. SuY. QiL. YangW. FuM. JingX. WangY. MaQ. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis.Nature2021598788264164510.1038/s41586‑021‑04001‑4 34646018
    [Google Scholar]
  48. OnuoraS. Intensive electroacupuncture reduces OA pain.Nat. Rev. Rheumatol.20211712 33268838
    [Google Scholar]
  49. LeeD.Y. JiuY.R. HsiehC.L. Electroacupuncture at zusanli and at neiguan characterized point specificity in the brain by metabolomic analysis.Sci. Rep.20201011071710.1038/s41598‑020‑67766‑0 32612281
    [Google Scholar]
  50. ChavanS.S. TraceyK.J. Regulating innate immunity with dopamine and electroacupuncture.Nat. Med.201420323924110.1038/nm.3501 24603793
    [Google Scholar]
  51. UthansakulP. KhanA.A. Enhancing the energy efficiency of mmwave massive MIMO by modifying the RF circuit configuration.Energies20191222435610.3390/en12224356
    [Google Scholar]
  52. UthansakulP. Ahmad KhanA. On the energy efficiency of millimeter wave massive MIMO based on hybrid architecture.Energies20191211222710.3390/en12112227
    [Google Scholar]
  53. UthansakulP. AnchuenP. UthansakulM. KhanA.A. QoE-aware self-tuning of service priority factor for resource allocation optimization in LTE networks.IEEE Trans. Vehicular Technol.202069188790010.1109/TVT.2019.2952568
    [Google Scholar]
  54. Ahmad KhanA. UthansakulP. DuangmaneeP. UthansakulM. Energy efficient design of massive MIMO by considering the effects of nonlinear amplifiers.Energies2018115104510.3390/en11051045
    [Google Scholar]
  55. KhanA.A. FaheemM. BashirR.N. WechtaisongC. AbbasM.Z. Internet of things (IoT) assisted context aware fertilizer recommendation.IEEE Access20221012950512951910.1109/ACCESS.2022.3228160
    [Google Scholar]
  56. ZhangS. PunS.H. MakP.U. QinY.P. LiuY.H. VaiM.I. Measurement and analysis of channel attenuation characteristics for an implantable galvanic coupling human-body communication.Technol. Health Care201624682182610.3233/THC‑161229 27341451
    [Google Scholar]
  57. ZhangS An experimental probe based on implantable human communicationCN Patent 201621101740U2016
    [Google Scholar]
  58. FarinaD. MesinL. MartinaS. MerlettiR. A surface EMG generation model with multilayer cylindrical description of the volume conductor.IEEE Trans. Biomed. Eng.200451341542610.1109/TBME.2003.820998 15000373
    [Google Scholar]
  59. ZhangS. LiY. YuY. KuangJ. YangJ. WangJ. LiuY. Analysis and fitting of a thorax path loss based on implantable galvanic coupling intra-body communication.Recent Adv. Comput. Sci. Commun.202114396997410.2174/2666255813999200831110505
    [Google Scholar]
  60. ZimmermanT.G. Personal Area Networks (PAN): Near-field intra-body communication.IBM Syst. J.19965
    [Google Scholar]
  61. PartridgeK. DahlquistB. VeisehA. Empirical measurements of intrabody communication performance under varied physical configurations14th Annual ACM Symposium on User Interface Software and Technology FloridaUSA200118319010.1145/502348.502381
    [Google Scholar]
  62. ShinagawaM. FukumotoM. OchiaiK. A near-field-sensing transceiver for intra-body communication based on the electrooptic effect.IEEE Trans. Instrum. Meas.202453615331538
    [Google Scholar]
  63. FujiiK. TakahashiM. ItoK. Electric field distributions of wearable devices using the human body as a transmission channel.IEEE Trans. Antenn. Propag.20075572080208710.1109/TAP.2007.900226
    [Google Scholar]
  64. XingY.P. Identification and simulation of stress injury of male tibia in jumping.Comput. Simul.2017342274277
    [Google Scholar]
  65. CuiY. WangX. ZhangH. Research on characteristics of human pelvic and lumbar injuries based on generalized half-sine wave excitation.J. Nanjing Univ. Sci. Tech.20224605544552
    [Google Scholar]
  66. EppingerR.H. MarcusJ.H. MorganM.M. Development of dummy and injury index for NHSTA’s thoracc side impact protectlon research programSAE Technical Paper1984840885
    [Google Scholar]
  67. ZhuJ. WangK.M. LiS. LiuH.Y. JingX. LiX.F. LiuY.H. Modeling and analysis of visual digital impact model for a Chinese human thorax.Technol. Health Care201725231131810.3233/THC‑161267 27792021
    [Google Scholar]
  68. LiX.F. KuangJ.M. NieS.B. XuJ. ZhuJ. LiuY.H. A numerical model for blast injury of human thorax based on digitized visible human.Technol. Health Care20172561029103910.3233/THC‑170885 28759981
    [Google Scholar]
  69. RobertsJ.C. MerkleA.C. BiermannP.J. WardE.E. CarkhuffB.G. CainR.P. O’ConnorJ.V. Computational and experimental models of the human torso for non-penetrating ballistic impact.J. Biomech.200740112513610.1016/j.jbiomech.2005.11.003 16376354
    [Google Scholar]
  70. GrimalQ. WatzkyA. NailiS. A one-dimensional model for the propagation of transient pressure waves through the lung.J. Biomech.20023581081108910.1016/S0021‑9290(02)00064‑7 12126667
    [Google Scholar]
  71. LeJ. Numerical simulation of shock (blast) wave interaction with bodies.Commun. Nonlinear Sci. Numer. Simul.1999411710.1016/S1007‑5704(99)90046‑1
    [Google Scholar]
  72. VianoD.C. LauI.V. A viscous tolerance criterion for soft tissue injury assessment.J. Biomech.198821538739910.1016/0021‑9290(88)90145‑5 3417691
    [Google Scholar]
  73. LiuY. Car rear-end and front end collision protection device, has instantaneous buffer for absorbing impact force of vehicle collision, and interference level protection front and rear bumper assembly for driving fixed rotating shaftCN Patent 1058825762016
    [Google Scholar]
  74. PeiP. LiuA. LiY. HuangS. Protective device for absorbing collapse landslide impact super-large opening diameter pipeline instantaneous impact energy, has pipeline main body located on outer protective buffer component sleeved with protective layerCN Patent 1157893982023
    [Google Scholar]
  75. QinY. ZhangM. KuangJ. ZhangS. Modeling pressure effect of circular tourniquet based on digital arm.Recent Pat. Mech. Eng.202417431231810.2174/0122127976303194240314082728
    [Google Scholar]
  76. KuangJ. ZhangM. ZhangS. QinY. Finite element model for local instantaneous impact protection analysis based on digital arm.Recent Pat. Mech. Eng.2024171687410.2174/0122127976274753231108114014
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558337431241129093951
Loading
/content/journals/rascs/10.2174/0126662558337431241129093951
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test