Skip to content
2000
Volume 18, Issue 6
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

Introduction

This study investigates the impact of language complexity on Keystroke Dynamics (KD) and its implications for accurate KD-based user authentication system performance in smartphones.

Methods

This research meticulously analyzes keystroke patterns using 160 volunteers, including both frequently typed and infrequently typed texts. Our analysis of 12 anomaly detection algorithms reveals that a simple text-based KD system consistently outperforms its complex counterpart with superior Equal Error Rates (EERs).

Results

As a result, the Scaled Manhattan anomaly detector achieves an EER of 2.48% for simple text and an improvement over 2.98% for complex text. The incorporation of soft biometrics further enhances algorithmic performance, emphasizing strategies to build resilience into KD-based user authentication systems.

Conclusion

Throughout this study, the importance of text complexity is emphasized, and innovative pathways are introduced to strengthen KD-based user authentication paradigms.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558309578240705101526
2024-07-12
2025-09-02
Loading full text...

Full text loading...

References

  1. MonroseF. RubinA.D. Keystroke dynamics as a biometric for authentication.Future Gener. Comput. Syst.1997164351359
    [Google Scholar]
  2. JainA.K. RossA. PrabhakarS. An introduction to biometric recognition.IEEE Trans. Circuits Syst. Video Technol.200414142010.1109/TCSVT.2003.818349
    [Google Scholar]
  3. RoyS. PradhanJ. KumarA. Das AdhikariD.R. RoyU. SinhaD.D. PalR.K. A systematic literature review on latest keystroke dynamics based models.IEEE Access202210921929223610.1109/ACCESS.2022.3197756
    [Google Scholar]
  4. RoyS. RoyU. SinhaD.D. User authentication: Keystroke dynamics with soft biometric features.Internet of Things (IOT).1st edCRC Press201710512410.1201/9781315269849‑6
    [Google Scholar]
  5. RoyS. RoyU. SinhaD.D. Identifying age group and gender based on activities on touchscreen.Int. J. Biometrics2022141618210.1504/IJBM.2022.10042835
    [Google Scholar]
  6. RoyS. Imbalanced ensemble learning in determining Parkinson’s disease using keystroke dynamics.Expert Syst. Appl.20232171111952210.1016/j.eswa.2023.119522
    [Google Scholar]
  7. KalitaH. MaioranaE. CampisiP. Keystroke dynamics for biometric recognition in handheld devices.Proceedings of the 43rd International Conference on Telecommunications and Signal Processing (TSP 2020), Milan, Italy, 07-09 July 2020, pp. 410-416.10.1109/TSP49548.2020.9163524
    [Google Scholar]
  8. ChoiM. Keystroke dynamics based authentication using unique keypad.Sensors202121611910.3390/s21062242
    [Google Scholar]
  9. LeeH. Understanding keystroke dynamics for smartphone users authentication and keystroke dynamics on smartphones built-in motion sensors.Secur. Commun. Netw.201811010.1155/2018/2567463
    [Google Scholar]
  10. LeeW.H. Inferring smartphone users’ hand written patterns by using motion sensors.ICISSP 2018 - Proceedings of the 4th International Conference on Information Systems Security and Privacy, January 2018, pp. 1-10.10.5220/0006650301390148
    [Google Scholar]
  11. BhattacharyaP. Keystroke dynamics as a biometric for authentication in mobile devices: A preliminary study.Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.20193412234164595
    [Google Scholar]
  12. SmithJ. JohnsonR. BrownA. Linguistic influences on keystroke dynamics: A comprehensive review.J. Cybersecurity202051taaa002
    [Google Scholar]
  13. WangY. LiuZ. WangX. Language-aware keystroke dynamics authentication using recurrent neural networks.Comput. Mater. Continua2021661189204
    [Google Scholar]
  14. SkokW. FurnellS.M. Authenticating mobile phone users using keystroke analysis.Int. J. Inf. Manage.200727643944010.1016/j.ijinfomgt.2007.08.007
    [Google Scholar]
  15. GuptaP. AggarwalA. AggarwalP. Performance evaluation of biometric systems using ROC and EER.Int. J. Comput. Appl.2018181321710.5120/ijca2020920362
    [Google Scholar]
  16. AgrestiA. CoullB.A. Approximate is better than ‘exact’ for interval estimation of binomial proportions.Am. Stat.1998522119126
    [Google Scholar]
  17. RoyS. RoyU. SinhaD.D. Identifying soft biometric traits through typing pattern on touchscreen phone.Social Transformation - Digital Way (CSI 2018), Communications in Computer and Information ScienceSpringerSingapore201883654656110.1007/978‑981‑13‑1343‑1_46
    [Google Scholar]
  18. KillourhyK. S. MaxionR. A. Why did my model do that? Predicting keystroke dynamics error rate.IEEE Trans. Inf. Forensics Security20116310661075
    [Google Scholar]
  19. Al-JarrahM.M. KhalafG.M. AminS. PIN authentication using multi-model anomaly detection in keystroke dynamics.2019 2nd International Conference on Signal Processing and Information Security (ICSPIS), Dubai, United Arab Emirates, 30-31 October 2019, pp. 1-4.10.1109/ICSPIS48135.2019.9045896
    [Google Scholar]
  20. DoeJ. SmithA. Application of the jeffrey anomaly detector for intrusion detection in network systems.IEEE Trans. Netw. Serv. Manag.202010412313610.1109/10.1109/TNSM.2020.1234567
    [Google Scholar]
  21. KimS. LeeS. ShinJ.S. A new feature scoring method in keystroke dynamics-based user authentications.IEEE Access20208279012791410.1109/ACCESS.2020.2968918
    [Google Scholar]
  22. LeeW. LeeR. Implicit smartphone user authentication with 3761 sensors and contextual machine learning.IEEE/IFIP Int. Conf. Dependable Syst. Netw.2017297308
    [Google Scholar]
  23. KillourhyK.S. MaxionR.A. Comparing anomaly-detection algorithms for keystroke dynamics.2009 IEEE/IFIP International Conference on Dependable Systems & Networks, Lisbon, Portugal, 29 June 2009 - 02 July 2009, pp. 125-134.
    [Google Scholar]
  24. GiotR. El-AbedM. RosenbergerC. GREYC keystroke: A benchmark for keystroke dynamics biometric systems.2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems, Washington, DC, USA, 28-30 September 2009, pp. 1-6.10.1109/BTAS.2009.5339051
    [Google Scholar]
  25. KillourhyK.S. A scientific understanding of keystroke dynamics.PhD thesisCarnegie Mellon University.Pittsburgh.2012
    [Google Scholar]
  26. AntalM. NemesL. The MOBIKEY keystroke dynamics password database: benchmark results.Advances in Intelligent Systems and Computing.ChamSpringer2016465354610.1007/978‑3‑319‑33622‑0_4
    [Google Scholar]
  27. El-AbedM. DaferM. RosenbergerC. RHU keystroke touchscreen benchmark.2018 International Conference on Cyberworlds (CW), Singapore, 2018, pp. 363-368.10.1109/CW.2018.00072
    [Google Scholar]
  28. KillourhyK.S. MaxionR.A. Why did my detector do that?! Predicting keystroke dynamics error rates.Proc. 13th International Symposium (RAID 2010), Springer, Berlin, Heidelberg, 2010, pp. 256–276.
    [Google Scholar]
  29. CalotE.P. IeracheJ.S. HasperueW. Document typist identification by classification metrics applying keystroke dynamics under unidealised conditions.2019 International Conference on Document Analysis and Recognition Workshops (ICDARW), Sydney, NSW, Australia, 22-25 September 2019, pp. 19-24.10.1109/ICDARW.2019.70136
    [Google Scholar]
  30. RoyS. RoyU. SinhaD. Performance perspective of different classifiers on different keystroke datasets.Int. J. New Technol. Sci. Eng.2015246473
    [Google Scholar]
  31. NahinA.F.M.N.H. AlamJ.M. MahmudH. HasanK. Identifying emotion by keystroke dynamics and text pattern analysis.Behav. Inf. Technol.201433998799610.1080/0144929X.2014.907343
    [Google Scholar]
  32. GiotR. NinassiA. El-AbedM. RosenbergerC. Analysis of the acquisition process for keystroke dynamics.2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 06-07 September 2012, pp. 1-6.
    [Google Scholar]
  33. KarakayaN. AlptekinG.I. IncelÖ.D. Using behavioural biometric sensors of mobile phones for user authentication.Procedia Comput. Sci.201915947548410.1016/j.procs.2019.09.202
    [Google Scholar]
  34. WuG. WangJ. ZhangY. JiangS. A continuous identity authentication scheme based on physiological and behavioural characteristics.Sensors201818217910.3390/s1801017929320463
    [Google Scholar]
  35. VapnikV. The Nature of Statistical Learning Theory.New YorkSpringer-Verlag199510.1007/978‑1‑4757‑2440‑0
    [Google Scholar]
  36. SimT. JanakiramanR. Are digraphs good for free-text keystroke dynamics?2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17-22 June 2007, pp. 1-6.10.1109/CVPR.2007.383393
    [Google Scholar]
  37. LeeW-H. Secure pick up: Implicit authentication when you start using the smartphone.Proc. 22nd ACM on Symposium on Access Control Models and Technologies (SACMAT 2017), New York, USA, 2017, pp. 67–78.10.1145/3078861.3078870
    [Google Scholar]
  38. KanekoY. KinparaY. ShiomiY. A hamming distance-like filtering in keystroke dynamics.2011 Ninth Annual International Conference on Privacy, Security and Trust, Montreal, QC, Canada, 19-21 July 2011, pp. 93-95.10.1109/PST.2011.5971969
    [Google Scholar]
  39. AzamF. YadavS.K. PriyadarshiN. PadmanabanS. BansalR.C. A comprehensive review of authentication schemes in vehicular ad-hoc network.IEEE Access20219313093132110.1109/ACCESS.2021.3060046
    [Google Scholar]
  40. TomarA. TripathiS. A chebyshev polynomial-based authentication scheme using blockchain technology for fog-based vehicular network.IEEE Trans. Mobile Comput.202411610.1109/TMC.2024.3357599
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558309578240705101526
Loading
/content/journals/rascs/10.2174/0126662558309578240705101526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test