Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2666-2558
  • E-ISSN: 2666-2566

Abstract

The increasing availability of digital healthcare data has opened up fresh prospects for improving healthcare through data analysis. Machine learning (ML) procedures exhibit great promise in analyzing large volumes of healthcare data to extract insights that could be utilized to improve patient outcomes and healthcare delivery. In this work, we suggest an integrated framework for digital healthcare data analysis by integrating unsupervised learning techniques and natural language processing (NLP) techniques into the analysis pipeline. The module on unsupervised learning will involve techniques, such as clustering and anomaly detection. By clustering similar patients together based on their medical history and other relevant factors, healthcare providers can identify subgroups of patients who may require different treatment approaches. Anomaly detection can also help to detect patients who stray from the norm, which could be indicative of underlying health issues or other issues that need additional investigation. The second module on NLP will enable healthcare providers to analyze unstructured text data such as clinical notes, patient surveys, and social media posts. NLP techniques can help to identify key themes and patterns in these datasets, requiring awareness that could not be readily apparent through other means. Overall, incorporating unsupervised learning techniques and NLP into the analysis pipeline for digital healthcare data possesses the promise to enhance patient results and lead to more personalized treatments, and represents a potential domain for upcoming research in this field. In this research, we also review the current state of research in digital healthcare information examination with ML, including applications like forecasting clinic readmissions, finding cancerous tumors, and developing personalized drug dosing recommendations. We also examine the potential benefits and challenges of utilizing ML in healthcare data analysis, including issues related to data quality, privacy, and interpretability. Lastly, we discuss the forthcoming research paths, involving the necessity for enhanced methods for incorporating information from several resources, developing more interpretable ML patterns, and addressing ethical and regulatory challenges. The usage of ML in digital healthcare data analysis promises to transform healthcare by empowering more precise diagnoses, personalized treatments, and improved health outcomes, and this work offers a complete overview of the current trends.

Loading

Article metrics loading...

/content/journals/rascs/10.2174/0126662558297036240527120451
2024-06-03
2025-09-01
Loading full text...

Full text loading...

References

  1. DashS. ShakyawarS.K. SharmaM. KaushikS. Big data in healthcare: Management, analysis and future prospects.J. Big Data2019615410.1186/s40537‑019‑0217‑0
    [Google Scholar]
  2. JavaidM. HaleemA. Pratap SinghR. SumanR. RabS. Significance of machine learning in healthcare: Features, pillars and applications.Int. J. Intell. Network.20223587310.1016/j.ijin.2022.05.002
    [Google Scholar]
  3. KasojuN. RemyaN.S. SasiR. SujeshS. SomanB. KesavadasC. MuraleedharanC.V. VarmaP.R.H. BehariS. Digital health: Trends, opportunities and challenges in medical devices, pharma and bio-technology.CSI Transact. ICT2023111113010.1007/s40012‑023‑00380‑3
    [Google Scholar]
  4. SenbekovM. SalievT. BukeyevaZ. AlmabayevaA. ZhanaliyevaM. AitenovaN. ToishibekovY. FakhradiyevI. The recent progress and applications of digital technologies in healthcare: A review.Int. J. Telemed. Appl.2020202011810.1155/2020/8830200 33343657
    [Google Scholar]
  5. PaulM. MaglarasL. FerragM.A. AlmomaniI. Digitization of healthcare sector: A study on privacy and security concerns.ICT Express20239457158810.1016/j.icte.2023.02.007
    [Google Scholar]
  6. AwrahmanB.J. FatahA.C. HamaaminM.Y. A review of the role and challenges of big data in healthcare informatics and analytics.Comput. Intell. Neurosci.2022202211010.1155/2022/5317760 36210978
    [Google Scholar]
  7. NavazA.N. SerhaniM.A. KassabiE.H.T. QirimA.N. IsmailH. Trends, technologies, and key challenges in smart and connected healthcare.IEEE Access20219740447406710.1109/ACCESS.2021.3079217 34812394
    [Google Scholar]
  8. WeisslerE.H. NaumannT. AnderssonT. RanganathR. ElementoO. LuoY. FreitagD.F. BenoitJ. HughesM.C. KhanF. SlaterP. ShameerK. RoeM. HutchisonE. KollinsS.H. BroedlU. MengZ. WongJ.L. CurtisL. HuangE. GhassemiM. The role of machine learning in clinical research: Transforming the future of evidence generation.Trials202122153710.1186/s13063‑021‑05489‑x 34399832
    [Google Scholar]
  9. BundiD.N. Adoption of machine learning systems within the health sector: A systematic review, synthesis and research agenda.Digit. Transform. Soci.2023319912010.1108/DTS‑06‑2023‑0041
    [Google Scholar]
  10. HossainE. RanaR. HigginsN. SoarJ. BaruaP.D. PisaniA.R. TurnerK. Natural language processing in electronic health records in relation to healthcare decision-making: A systematic review.Comput. Biol. Med.202315510664910.1016/j.compbiomed.2023.106649 36805219
    [Google Scholar]
  11. ShastryK.A. ShastryA. An integrated deep learning and natural language processing approach for continuous remote monitoring in digital health.Decis. Analyt. J.2023810030110.1016/j.dajour.2023.100301
    [Google Scholar]
  12. ChenP.H. ZafarH. Galperin-AizenbergM. CookT. Integrating natural language processing and machine learning algorithms to categorize oncologic response in radiology reports.J. Digit. Imaging201831217818410.1007/s10278‑017‑0027‑x 29079959
    [Google Scholar]
  13. JoshiM. PalA. SankarasubbuM. Federated learning for healthcare domain - Pipeline, applications and challenges.ACM Trans. Comput. Healthc.20223413610.1145/3533708
    [Google Scholar]
  14. HousseinE.H. MohamedR.E. AliA.A. Machine learning techniques for biomedical natural language processing: A comprehensive review.IEEE Access2021914062814065310.1109/ACCESS.2021.3119621
    [Google Scholar]
  15. HabehhH. GohelS. Machine learning in healthcare.Curr. Genomics202122429130010.2174/1389202922666210705124359 35273459
    [Google Scholar]
  16. YangS. ZhuF. LingX. LiuQ. ZhaoP. Intelligent health care: Applications of deep learning in computational medicine.Front. Genet.20211260747110.3389/fgene.2021.607471 33912213
    [Google Scholar]
  17. BajwaJ. MunirU. NoriA. WilliamsB. Artificial intelligence in healthcare: Transforming the practice of medicine.Future Healthc. J.202182e188e19410.7861/fhj.2021‑0095 34286183
    [Google Scholar]
  18. SabetN.N. ZandR. ZhangY. AbediV. Artificial intelligence transforms the future of health care.Am. J. Med.2019132779580110.1016/j.amjmed.2019.01.017 30710543
    [Google Scholar]
  19. GibbonsS.J.A.M. GibbonsS.C.J. Machine learning in medicine: A practical introduction.BMC Med. Res. Methodol.20191916410.1186/s12874‑019‑0681‑4 30890124
    [Google Scholar]
  20. SoenksenL.R. MaY. ZengC. BoussiouxL. CarballoV.K. NaL. WibergH.M. LiM.L. FuentesI. BertsimasD. Integrated multimodal artificial intelligence framework for healthcare applications.NPJ Digit. Med.20225114910.1038/s41746‑022‑00689‑4 36127417
    [Google Scholar]
  21. WartelleA. Mourad-ChehadeF. YalaouiF. ChruscielJ. LaplancheD. SanchezS. Clustering of a health dataset using diagnosis co-occurrences.Appl. Sci.2021115237310.3390/app11052373
    [Google Scholar]
  22. MomahhedS.S. SefiddashtiE.S. MinaeiB. ShahaliZ. K-means clustering of outpatient prescription claims for health insureds in Iran.BMC Public Health202323178810.1186/s12889‑023‑15753‑1 37118700
    [Google Scholar]
  23. AyazM. PashaM.F. LeT.Y. AlahmadiT.J. AbdullahN.N.B. AlhababiZ.A. A framework for automatic clustering of EHR messages using a spatial clustering approach.Health Care202311339010.3390/healthcare11030390 36766965
    [Google Scholar]
  24. SamariyaD. MaJ. AryalS. ZhaoX. Detection and explanation of anomalies in healthcare data.Health Inf. Sci. Syst.20231112010.1007/s13755‑023‑00221‑2 37035724
    [Google Scholar]
  25. GałkaŁ. KarczmarekP. TokovarovM. ZhaoX. Effective enhancement of isolation forest method based on minimal spanning tree clustering.Inf. Sci.202362832033810.1016/j.ins.2023.01.104
    [Google Scholar]
  26. TaoH. DuanQ. LuM. HuZ. Learning discriminative feature representation with pixel-level supervision for forest smoke recognition.Pattern Recognit.202314310976110.1016/j.patcog.2023.109761
    [Google Scholar]
  27. AbuHalimehA. AliO. Comprehensive review for healthcare data quality challenges in blockchain technology.Front. Big Data20236117362010.3389/fdata.2023.1173620 37252129
    [Google Scholar]
  28. LiuF. PanagiotakosD. Real-world data: A brief review of the methods, applications, challenges and opportunities.BMC Med. Res. Methodol.202222128710.1186/s12874‑022‑01768‑6 36335315
    [Google Scholar]
  29. TheodosK. SittigS. Health information privacy laws in the digital age: HIPAA doesn’t apply.Perspect. Health Inf. Manag.2020181l 33633522
    [Google Scholar]
  30. MbonihankuyeS. NkunzimanaA. NdagijimanaA. Healthcare data security technology: HIPAA compliance.Wirel. Commun. Mob. Comput.201920191710.1155/2019/1927495
    [Google Scholar]
  31. Ghaffar NiaN. KaplanogluE. NasabA. Evaluation of artificial intelligence techniques in disease diagnosis and prediction.Discov. Artif. Intell.202331510.1007/s44163‑023‑00049‑5
    [Google Scholar]
  32. KellyC.J. KarthikesalingamA. SuleymanM. CorradoG. KingD. Key challenges for delivering clinical impact with artificial intelligence.BMC Med.201917119510.1186/s12916‑019‑1426‑2 31665002
    [Google Scholar]
  33. PengJ. JuryE.C. DönnesP. CiurtinC. Machine learning techniques for personalised medicine approaches in immune-mediated chronic inflammatory diseases: Applications and challenges.Front. Pharmacol.20211272069410.3389/fphar.2021.720694 34658859
    [Google Scholar]
  34. AhsanM.M. LunaS.A. SiddiqueZ. Machine-learning-based disease diagnosis: A comprehensive review.Health Care202210354110.3390/healthcare10030541 35327018
    [Google Scholar]
  35. OmoregbeN.A.I. NdamanI.O. MisraS. AlliA.O.O. DamaševičiusR. Text messaging-based medical diagnosis using natural language processing and fuzzy logic.J. Healthc. Eng.2020202011410.1155/2020/8839524
    [Google Scholar]
  36. NanY. SerJ.D. WalshS. SchönliebC. RobertsM. SelbyI. HowardK. OwenJ. NevilleJ. GuiotJ. ErnstB. PastorA. BayarriA.A. MenzelM.I. WalshS. VosW. FlerinN. CharbonnierJ.P. van RikxoortE. ChatterjeeA. WoodruffH. LambinP. AlberichC.L. BonmatíM.L. HerreraF. YangG. Data harmonisation for information fusion in digital healthcare: A state-of-the-art systematic review, meta-analysis and future research directions.Inf. Fusion2022829912210.1016/j.inffus.2022.01.001 35664012
    [Google Scholar]
  37. AbdullahT.A.A. ZahidM.S.M. AliW. A review of interpretable ML in healthcare: Taxonomy, applications, challenges, and future directions.Symmetry20211312243910.3390/sym13122439
    [Google Scholar]
  38. NaikN. HameedB.M.Z. ShettyD.K. SwainD. ShahM. PaulR. AggarwalK. IbrahimS. PatilV. SmritiK. ShettyS. RaiB.P. ChlostaP. SomaniB.K. Legal and ethical consideration in artificial intelligence in healthcare: Who takes responsibility?Front. Surg.2022986232210.3389/fsurg.2022.862322 35360424
    [Google Scholar]
  39. AliO. AbdelbakiW. ShresthaA. ElbasiE. AlryalatM.A.A. DwivediY.K. A systematic literature review of artificial intelligence in the healthcare sector: Benefits, challenges, methodologies, and functionalities.J. Innov. Knowled.20238110033310.1016/j.jik.2023.100333
    [Google Scholar]
  40. TeoK.W. HuY. ChewK.T. PekW.Y. ChuaH.C. MatcharD.B. NgY.F. Health system transformation playbook and unified care model: An integrated design, systems & complexity thinking approach to health system transformation.Front. Health Serv.20233115703810.3389/frhs.2023.1157038 37600927
    [Google Scholar]
  41. MaW. ZhaoJ. ZhuH. ShenJ. JiaoL. WuY. HouB. A spatial-channel collaborative attention network for enhancement of multiresolution classification.Remote Sens.202013110610.3390/rs13010106
    [Google Scholar]
/content/journals/rascs/10.2174/0126662558297036240527120451
Loading
/content/journals/rascs/10.2174/0126662558297036240527120451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test