Skip to content
2000
Volume 19, Issue 1
  • ISSN: 2772-2708
  • E-ISSN: 2772-2716
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/277227081901241223145542
2024-12-23
2025-09-23
Loading full text...

Full text loading...

/deliver/fulltext/raiad/19/1/RAIAD-19-1-02.html?itemId=/content/journals/raiad/10.2174/277227081901241223145542&mimeType=html&fmt=ahah

References

  1. (a SenS. SharmaA. KriplaniP. MalhotraH. MittalV. Formulation and evaluation of microsponges-loaded transdermal gel for the management of osteoarthritis.Rec Adv Inflamm Allergy Drug Discov20241810.2174/0127722708297654240718053117
    [Google Scholar]
  2. (a SenS. SharmaA. KriplaniP. MalhotraH. MittalV. Formulation and evaluation of microsponges-loaded transdermal gel for the management of osteoarthritis.Rec Adv Inflamm Allergy Drug Discov20241810.2174/0127722708297654240718053117
    [Google Scholar]
  3. GylesC. NanotechnologyCan. Vet. J.2012538819822
    [Google Scholar]
  4. BaydaS. AdeelM. TuccinardiT. CordaniM. RizzolioF. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine.Molecules201925111210.3390/molecules25010112 31892180
    [Google Scholar]
  5. SainiR. SainiS. SharmaS. Nanotechnology: The future medicine.J. Cutan. Aesthet. Surg.201031323310.4103/0974‑2077.63301 20606992
    [Google Scholar]
  6. JonesE. HeJ. VanBrocklinH. FrancB. SeoY. Nanoprobes for medical diagnosis: Current status of nanotechnology in molecular imaging.Curr. Nanosci.200841172910.2174/157341308783591843
    [Google Scholar]
  7. WeissigV. PettingerT. MurdockN. Nanopharmaceuticals (part 1): Products on the market.Int. J. Nanomedicine201494357437310.2147/IJN.S46900 25258527
    [Google Scholar]
  8. PalazzoloS. HadlaM. SpenaC.R. Proof-of-concept multistage biomimetic liposomal DNA origami nanosystem for the remote loading of doxorubicin.ACS Med. Chem. Lett.201910451752110.1021/acsmedchemlett.8b00557 30996789
    [Google Scholar]
  9. LeeP.Y. WongK.K.Y. Nanomedicine: A new frontier in cancer therapeutics.Curr. Drug Deliv.20118324525310.2174/156720111795256110 21291378
    [Google Scholar]
  10. CaruthersS.D. WicklineS.A. LanzaG.M. Nanotechnological applications in medicine.Curr. Opin. Biotechnol.2007181263010.1016/j.copbio.2007.01.006 17254762
    [Google Scholar]
  11. XuM. QiY. LiuG. SongY. JiangX. DuB. Size-dependent in vivo transport of nanoparticles: Implications for delivery, targeting, and clearance.ACS Nano20231721208252084910.1021/acsnano.3c05853 37921488
    [Google Scholar]
  12. JoD.H. KimJ.H. LeeT.G. KimJ.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases.Nanomedicine 20151171603161110.1016/j.nano.2015.04.015 25989200
    [Google Scholar]
  13. HuB. LiuR. LiuQ. Engineering surface patterns on nanoparticles: New insights into nano-bio interactions.J. Mater. Chem. B Mater. Biol. Med.202210142357238310.1039/D1TB02549J 35229092
    [Google Scholar]
  14. XieX. LiaoJ. ShaoX. LiQ. LinY. The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles.Sci. Rep.201771382710.1038/s41598‑017‑04229‑z 28630477
    [Google Scholar]
  15. DiJ. GaoX. DuY. ZhangH. GaoJ. ZhengA. Size, shape, charge and “stealthy” surface: Carrier properties affect the drug circulation time in vivo.Asian J. Pharm. Sci.202116444445810.1016/j.ajps.2020.07.005 34703494
    [Google Scholar]
  16. WangQ. QinX. FangJ. SunX. Nanomedicines for the treatment of rheumatoid arthritis: State of art and potential therapeutic strategies.Acta Pharm. Sin. B20211151158117410.1016/j.apsb.2021.03.013 34094826
    [Google Scholar]
  17. HuangY. GuoX. WuY. Nanotechnology’s frontier in combatting infectious and inflammatory diseases: Prevention and treatment.Signal Transduct. Target. Ther.2024913410.1038/s41392‑024‑01745‑z 38378653
    [Google Scholar]
  18. HuangY.S. WangJ.T. TaiH.M. ChangP.C. HuangH.C. YangP.C. Metal nanoparticles and nanoparticle composites are effective against Haemophilus influenzae, Streptococcus pneumoniae, and multidrug-resistant bacteria.J. Microbiol. Immunol. Infect.202255470871510.1016/j.jmii.2022.05.003 35718718
    [Google Scholar]
  19. GonzálezL.F. AcuñaE. ArellanoG. Intranasal delivery of interferon-β-loaded nanoparticles induces control of neuroinflammation in a preclinical model of multiple sclerosis: A promising simple, effective, non-invasive, and low-cost therapy.J. Control. Release202133144345910.1016/j.jconrel.2020.11.019
    [Google Scholar]
  20. ZhangL. QinZ. SunH. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment.Bioact. Mater.20221811410.1016/j.bioactmat.2022.02.017 35387158
    [Google Scholar]
  21. WangC. ZhangY. DongY. Lipid nanoparticle–mrna formulations for therapeutic applications.Acc. Chem. Res.202154234283429310.1021/acs.accounts.1c00550 34793124
    [Google Scholar]
  22. BöttgerR. PauliG. ChaoP.H. Al FayezN. HohenwarterL. LiS.D. Lipid-based nanoparticle technologies for liver targeting.Adv. Drug Deliv. Rev.2020154-15579101
    [Google Scholar]
  23. XuY. FourniolsT. LabrakY. PréatV. BeloquiA. des RieuxA. Surface modification of lipid-based nanoparticles.ACS Nano20221657168719610.1021/acsnano.2c02347 35446546
    [Google Scholar]
  24. BallR. BajajP. WhiteheadK. Achieving long-term stability of lipid nanoparticles: Examining the effect of pH, temperature, and lyophilization.Int. J. Nanomedicine20161230531510.2147/IJN.S123062 28115848
    [Google Scholar]
  25. WilsonB. GeethaK.M. Lipid nanoparticles in the development of mRNA vaccines for COVID-19.J. Drug Deliv. Sci. Technol.20227410355310.1016/j.jddst.2022.103553 35783677
    [Google Scholar]
  26. LeeY. JeongM. ParkJ. JungH. LeeH. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics.Exp. Mol. Med.202355102085209610.1038/s12276‑023‑01086‑x 37779140
    [Google Scholar]
  27. ChenS.P. BlakneyA.K. Immune response to the components of lipid nanoparticles for ribonucleic acid therapeutics.Curr. Opin. Biotechnol.20248510304910.1016/j.copbio.2023.103049 38118363
    [Google Scholar]
  28. Omo-LamaiS. WangY. PatelM.N. Lipid nanoparticle-associated inflammation is triggered by sensing of endosomal damage: Engineering endosomal escape without side effects.bioRxiv202410.1101/2024.04.16.589801
    [Google Scholar]
  29. YadavS. GandhamS.K. PanicucciR. AmijiM.M. Intranasal brain delivery of cationic nanoemulsion-encapsulated TNFα siRNA in prevention of experimental neuroinflammation.Nanomedicine 2016124987100210.1016/j.nano.2015.12.374 26767514
    [Google Scholar]
  30. ChengC.J. TietjenG.T. Saucier-SawyerJ.K. SaltzmanW.M. A holistic approach to targeting disease with polymeric nanoparticles.Nat. Rev. Drug Discov.201514423924710.1038/nrd4503 25598505
    [Google Scholar]
  31. BrannonE.R. GuevaraM.V. PacificiN.J. LeeJ.K. LewisJ.S. Eniola-AdefesoO. Polymeric particle-based therapies for acute inflammatory diseases.Nat. Rev. Mater.202271079681310.1038/s41578‑022‑00458‑5 35874960
    [Google Scholar]
  32. ZielińskaA. CarreiróF. OliveiraA.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology.Molecules20202516373110.3390/molecules25163731 32824172
    [Google Scholar]
  33. BhardwajH. JangdeR.K. Current updated review on preparation of polymeric nanoparticles for drug delivery and biomedical applications.Next Nanotechnology2023210001310.1016/j.nxnano.2023.100013
    [Google Scholar]
  34. MadawiE.A. Al JayoushA.R. Rawas-QalajiM. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases.Pharmaceutics202315265710.3390/pharmaceutics15020657 36839979
    [Google Scholar]
  35. García-FernándezA. SanchoM. BisbalV. Targeted-lung delivery of dexamethasone using gated mesoporous silica nanoparticles. A new therapeutic approach for acute lung injury treatment.J. Control. Release2021337142610.1016/j.jconrel.2021.07.010 34265332
    [Google Scholar]
  36. PaithankarD. HwangB.H. MunavalliG. Ultrasonic delivery of silica–gold nanoshells for photothermolysis of sebaceous glands in humans: Nanotechnology from the bench to clinic.J. Control. Release2015206303610.1016/j.jconrel.2015.03.004 25747145
    [Google Scholar]
  37. van der ValkF.M. van WijkD.F. LobattoM.E. Prednisolone-containing liposomes accumulate in human atherosclerotic macrophages upon intravenous administration.Nanomedicine 20151151039104610.1016/j.nano.2015.02.021 25791806
    [Google Scholar]
  38. KumarR. DograS. AmarjiB. Efficacy of novel topical liposomal formulation of cyclosporine in mild to moderate stable plaque psoriasis: a randomized clinical trial.JAMA Dermatol.2016152780781510.1001/jamadermatol.2016.0859 27096709
    [Google Scholar]
  39. LiY. Nanotechnology-mediated immunomodulation strategy for inflammation resolution.Adv. Healthc. Mater.20241327e2401384
    [Google Scholar]
/content/journals/raiad/10.2174/277227081901241223145542
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test