Skip to content
2000
image of Pharmacological Characterization of Ruellia tuberosa Ethanolic Extract in a Rodent Model of Cognitive Impairment

Abstract

Introduction

Cognitive impairment linked to neurodegenerative diseases poses a considerable challenge, requiring the exploration of plant-derived therapeutic alternatives. , a medicinal plant recognized for its anti-oxidant and anti-inflammatory properties, was examined for its therapeutic potential in a rodent model of memory impairment.

Methods

The present study aimed to evaluate the effects of ethanolic extract (RTEE) on aluminium chloride (AlCl)-induced Alzheimer's disease (AD) in adult Wistar rats. cell line study showed decreased formation of reactive oxygen species (ROS), decreased levels of IL-6 (Interleukin-6), and suppressed NF-κB (Nuclear factor kappa-B) translocation, which further confirmed RTEE's antioxidant and anti-inflammatory characteristics. Following the objective, thirty adult Wistar rats were taken and divided into five groups (n=6). They were treated with Normal saline, AlCl (100 mg/kg) DPZ (Donepezil- 3 mg/kg), and RTEE (100 and 200 mg/kg), respectively, for 35 days.

Results

Various behavioral and biochemical parameters, along with the oxidative and 
inflammatory biomarkers, were assessed to determine the effects of RTEE. The plant extract 
at both the doses (100 and 200 mg/kg) demonstrated increased body weight, improved motor coordination as demonstrated by an increase in fall-off time on the Rota rod apparatus, 
decreased escape latency in the Morris water maze test, reduced transfer latency (TL) in the
elevated plus maze test, increased time spent in the target quadrant, and increased exploration time in the novel object recognition test. Furthermore, RTEE treatment exhibited decreased 
levels of malondialdehyde (MDA) and acetylcholinesterase (AChE) activity and increased 
levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total protein. Additionally, RTEE reduced levels of inflammatory cytokines, such as TNF-α and IL-1β, which decreased neuroinflammation and amyloid-beta levels. Additionally, the extract exhibited 
cholinergic system modulation, as observed by improved acetylcholinesterase activity, 
suggesting its potential role in neurotransmitter regulation. Histopathological study further 
confirmed its neuroprotective potential by reducing neuronal degeneration in brain regions 
(hippocampus and cortex).

Discussion

This study highlights Ruellia tuberosa's potential as a natural remedy for the treatment of neurodegenerative diseases, providing scientific validation for its traditional usage. The neuroprotective effects observed are the results of the plant's efficacy in inhibiting neuroinflammation and oxidative stress, which are significant factors in cognitive decline. In the end, our results assist the development of plant-based therapies for cognitive disorders by providing a crucial foundation for future research aimed at identifying active chemicals, elucidating processes, and investigating long-term effectiveness.

Conclusion

According to the study's findings, memory impairment in the AlCl-induced rat model of AD was ameliorated by both doses of RTEE. However, further studies need to be conducted to establish its therapeutic effects in neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708364435250604032539
2025-06-13
2025-10-22
Loading full text...

Full text loading...

References

  1. Hippius H. Neundörfer G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci. 2003 5 1 101 108 10.31887/DCNS.2003.5.1/hhippius 22034141
    [Google Scholar]
  2. Turner R.S. Alzheimer’s disease. Neurogenetics Sci Clin Adv 2000 2005 643 661
    [Google Scholar]
  3. Dubois B. Hampel H. Feldman H.H. Scheltens P. Andrieu S. Bakardjian H. Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria. In: Alzheimers Dement. 2019 12 3 292 32 10.1016/j.jalz.2016.02.002.
    [Google Scholar]
  4. Giacobini E. Gold G. Alzheimer disease therapy—moving from amyloid-β to tau. Nat. Rev. Neurol. 2013 9 12 677 686 10.1038/nrneurol.2013.223 24217510
    [Google Scholar]
  5. Mohapatra D. Kanungo S. Pradhan S.P. Jena S. Prusty S.K. Sahu P.K. Captopril is more effective than Perindopril against aluminium chloride induced amyloidogenesis and AD like pathology. Heliyon 2022 8 2 e08935 10.1016/j.heliyon.2022.e08935 35243060
    [Google Scholar]
  6. Zhang Y. Chen H. Li R. Sterling K. Song W. Amyloid β-based therapy for Alzheimer’s disease: Challenges, successes and future. Signal Transduct. Target. Ther. 2023 8 1 248 10.1038/s41392‑023‑01484‑7 37386015
    [Google Scholar]
  7. Dubois B. Feldman H.H. Jacova C. Advancing research diagnostic criteria for Alzheimer’s disease: The IWG-2 criteria. Lancet Neurol. 2014 13 6 614 629 10.1016/S1474‑4422(14)70090‑0 24849862
    [Google Scholar]
  8. Morris J.C. Roe C.M. Grant E.A. Pittsburgh compound B imaging and prediction of progression from cognitive normality to symptomatic Alzheimer disease. Arch. Neurol. 2009 66 12 1469 1475 10.1001/archneurol.2009.269 20008650
    [Google Scholar]
  9. Bennett D.A. Schneider J.A. Arvanitakis Z. Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology 2006 66 12 1837 1844 10.1212/01.wnl.0000219668.47116.e6 16801647
    [Google Scholar]
  10. Knopman D.S. Parisi J.E. Salviati A. Neuropathology of cognitively normal elderly. J. Neuropathol. Exp. Neurol. 2003 62 11 1087 1095 10.1093/jnen/62.11.1087 14656067
    [Google Scholar]
  11. Jicha G.A. Abner E.L. Schmitt F.A. Preclinical AD Workgroup staging: Pathological correlates and potential challenges. Neurobiol. Aging 2012 33 3 622.e1 622.e16 10.1016/j.neurobiolaging.2011.02.018 21507528
    [Google Scholar]
  12. Valko M. Leibfritz D. Moncol J. Cronin M.T.D. Mazur M. Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007 39 1 44 84 10.1016/j.biocel.2006.07.001 16978905
    [Google Scholar]
  13. Norat P. Soldozy S. Sokolowski J.D. Gorick C.M. Kumar J.S. Chae Y. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. npj. Regen. Med. 2020 5 1 1 9 33200672
    [Google Scholar]
  14. Fischer R. Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: Role of TNF. Oxid. Med. Cell. Longev. 2015 2015 610813 25834699
    [Google Scholar]
  15. Savonenko A.V. Wong P.C. Li T. Alzheimer diseases. Neurobiology of Brain Disorders: Biological Basis of Neurological and Psychiatric Disorders. 2nd ed. Academic Press 2022 313 336 10.1016/C2020‑0‑01841‑4
    [Google Scholar]
  16. Picca A. Calvani R. Coelho-Júnior H.J. Landi F. Bernabei R. Marzetti E. Mitochondrial dysfunction, oxidative stress, and neuroinflammation: Intertwined roads to neurodegeneration. Antioxidants 2020 9 8 647 10.3390/antiox9080647 32707949
    [Google Scholar]
  17. Ogunlade B. Adelakun S.A. Agie J.A. Nutritional supplementation of gallic acid ameliorates Alzheimer-type hippocampal neurodegeneration and cognitive impairment induced by aluminum chloride exposure in adult Wistar rats. Drug Chem. Toxicol. 2022 45 2 651 662 10.1080/01480545.2020.1754849 32329360
    [Google Scholar]
  18. Calabrò M. Rinaldi C. Santoro G. Crisafulli C. The biological pathways of Alzheimer disease: A review. AIMS Neurosci. 2021 8 1 86 132 10.3934/Neuroscience.2021005 33490374
    [Google Scholar]
  19. Rajamanickam G. Manju S.L. Neuroprotective effects of chitosan nanoparticles loaded with niruriflavone in an aluminium chloride-induced Alzheimer’s disease rat model. Toxicol. Environ. Health Sci. 2024 16 2 181 190 10.1007/s13530‑024‑00207‑x
    [Google Scholar]
  20. Dey M. Singh R.K. Chronic oral exposure of aluminum chloride in rat modulates molecular and functional neurotoxic markers relevant to Alzheimer’s disease. Toxicol. Mech. Methods 2022 32 8 616 627 10.1080/15376516.2022.2058898 35341471
    [Google Scholar]
  21. Guo T. Zhang D. Zeng Y. Huang T.Y. Xu H. Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer’s disease. Molecular neurodegeneration 2020 15 1 40
    [Google Scholar]
  22. Zieneldien T. Kim J. Cao C. The multifaceted role of neuroprotective plants in Alzheimer’s disease treatment. Geriatrics 2022 7 2 24 10.3390/geriatrics7020024
    [Google Scholar]
  23. Nagori K. Nakhate K.T. Yadav K. Ajazuddin, Pradhan M. Unlocking the therapeutic potential of medicinal plants for alzheimer’s disease: Preclinical to clinical trial insights. Future Pharmacol 2023 3 4 877 907 10.3390/futurepharmacol3040053
    [Google Scholar]
  24. Hussien H.M. Abd-Elmegied A. Ghareeb D.A. Hafez H.S. Ahmed H.E.A. El-moneam N.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem. Toxicol. 2018 111 432 444 10.1016/j.fct.2017.11.025 29170048
    [Google Scholar]
  25. Cao Z. Wang F. Xiu C. Zhang J. Li Y. Hypericum perforatum extract attenuates behavioral, biochemical, and neurochemical abnormalities in Aluminum chloride-induced Alzheimer’s disease rats. Biomed. Pharmacother. 2017 91 931 937 10.1016/j.biopha.2017.05.022 28514831
    [Google Scholar]
  26. Exley C. Vickers T. Elevated brain aluminium and early onset Alzheimer’s disease in an individual occupationally exposed to aluminium: A case report. J. Med. Case Reports 2014 8 1 41 10.1186/1752‑1947‑8‑41 24513181
    [Google Scholar]
  27. Mirza A. King A. Troakes C. Exley C. Aluminium in brain tissue in familial Alzheimer’s disease. J. Trace Elem. Med. Biol. 2017 40 30 36 10.1016/j.jtemb.2016.12.001 28159219
    [Google Scholar]
  28. Ayaz A. Inan-Eroglu E. Is aluminum exposure a risk factor for neurological disorders? J. Res. Med. Sci. 2018 23 1 51 10.4103/jrms.JRMS_921_17 30057635
    [Google Scholar]
  29. Liaquat L. Sadir S. Batool Z. Tabassum S. Shahzad S. Afzal A. Acute aluminum chloride toxicity revisited: Study on DNA damage and histopathological, biochemical and neurochemical alterations in rat brain. Life Sci. 2019 217 202 211 10.1016/j.lfs.2018.12.009
    [Google Scholar]
  30. Lee J. Kwon S. Jin C. Traditional East Asian herbal medicine treatment for Alzheimer’s disease: A systematic review and meta-analysis. Pharmaceuticals 2022 15 2 1 39 10.3390/ph16010001 35215287
    [Google Scholar]
  31. John O.O. Amarachi I.S. Chinazom A.P. Adaeze E. Kale M.B. Umare M.D. Phytotherapy: A promising approach for the treatment of Alzheimer’s disease. Pharmacol Res - Mod Chin Med 2022 2 100030 10.1016/j.prmcm.2021.100030
    [Google Scholar]
  32. Peng Y. Tao H. Wang S. Xiao J. Wang Y. Su H. Dietary intervention with edible medicinal plants and derived products for prevention of Alzheimer’s disease: A compendium of time-tested strategy. J. Funct. Foods 2021 81 104463 10.1016/j.jff.2021.104463
    [Google Scholar]
  33. Chen F.A. Wu A.B. Shieh P. Kuo D.H. Hsieh C.Y. Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chem. 2006 94 1 14 18 10.1016/j.foodchem.2004.09.046
    [Google Scholar]
  34. Chothani D.L. Patel M.B. Mishra S.H. Vaghasiya H.U. Review on Ruellia tuberosa (Cracker plant). Pharmacogn. J. 2010 2 12 506 512 10.1016/S0975‑3575(10)80040‑9
    [Google Scholar]
  35. Chang W.C. Huang D.W. Chen J.A. Chang Y.F. Swi-Bea Wu J. Shen S.C. Protective effect of Ruellia tuberosa L. extracts against abnormal expression of hepatic detoxification enzymes in diabetic rats. RSC Advances 2018 8 38 21596 21605 10.1039/C8RA03321H 35539960
    [Google Scholar]
  36. Cheong B.E. Waslim M.Z. Lem F.F. Teoh P.L. Antioxidant and anti-proliferative activities of Sabah Ruellia tuberosa. J. Appl. Pharm. Sci. 2013 3 12 20 24
    [Google Scholar]
  37. Singh S. Sharma N. Jhade D. A Critical review on Ruellia tuberosa, Saccharum Benghalense And Dichanthium Annulatum with huge availability in ‘Middle Ganga Segment.’. J. Pharm. Negat. Results 2023 14 1 748 754
    [Google Scholar]
  38. Safitri A. Fatchiyah F. Sari D.R.T. Roosdiana A. Phytochemical screening, in vitro anti-oxidant activity, and in silico anti-diabetic activity of aqueous extracts of Ruellia tuberosa L. J. Appl. Pharm. Sci. 2020 10 3 101 108 10.7324/JAPS.2020.103013
    [Google Scholar]
  39. Thi Pham T.N. Nguyen T.T. Le Thi Nguyen T. Nguyen Tran A.M. Nguyen T.N. Tong D.T. Antioxidant and anti-inflammatory activities of phytochemicals from Ruellia tuberosa. J. Chem. 2022 4644641 1 14 10.1155/2022/4644641
    [Google Scholar]
  40. Jin Z. Chen X. A simple reproducible model of free radical-injured isolated heart induced by 1,1-diphenyl-2-picryl-hydrazyl (DPPH). J. Pharmacol. Toxicol. Methods 1996 39 63 70 10.1016/S1056‑8719(97)00093‑2
    [Google Scholar]
  41. Sharma R.K. Agarwal A. Role of reactive oxygen species in male infertility. Urology 1996 48 6 835 850 10.1016/S0090‑4295(96)00313‑5 8973665
    [Google Scholar]
  42. Kripasana K. Xavier J. Phytochemical analysis and antioxidant activity of leaf extracts of some selected plants of the family Acanthaceae. Plant Sci. Today 2020 7 2 264 274 10.14719/pst.2020.7.2.717
    [Google Scholar]
  43. Lin C-F. Huang Y. Cheng L-Y. Sheu S-J. Chen C. Bioactive flavonoids from Ruellia tuberosa. J. Chin. Med. 2006 17 3 103 107
    [Google Scholar]
  44. Ames B.N. Dietary carcinogens and anti-carcinogens. J. Toxicol. Clin. Toxicol. 1984 22 3 291 301 10.3109/15563658408992561 6502792
    [Google Scholar]
  45. Leong L.P. Shui G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002 76 1 69 75 10.1016/S0308‑8146(01)00251‑5
    [Google Scholar]
  46. Ojha PS Biradar PR Tubachi S Patil VS Evaluation of neuroprotective effects of Canna indica L against aluminium chloride induced memory impairment in rats. Adv Tradit Med 2022 2022 0123456789 10.1007/s13596‑021‑00627‑x
    [Google Scholar]
  47. Khandelwal K. Practical Pharmacognosy. Pragati Books Pvt. Ltd 2008
    [Google Scholar]
  48. Thangjam N.M. Taijong J. Kumar A. Phytochemical and pharmacological activities of methanol extract of Artemisia vulgaris L. leaves. Clinical Phytoscience 2020 6 1 72 10.1186/s40816‑020‑00214‑8
    [Google Scholar]
  49. Benchikha N. Messaoudi M. Larkem I. Evaluation of possible antioxidant, anti-hyperglycaemic, anti-alzheimer and anti-inflammatory effects of Teucrium polium aerial parts (Lamiaceae). Life 2022 12 10 1579 10.3390/life12101579 36295014
    [Google Scholar]
  50. Kanwal S. Ahmad S. Yasmin Begum M. Chemical Profiling, in-vitro biological evaluation and molecular docking studies of Ruellia tweediana: An unexplored plant. Saudi Pharm. J. 2024 32 2 101939 10.1016/j.jsps.2023.101939 38261891
    [Google Scholar]
  51. Lee S.J. Chung H.Y. Maier C.G.A. Wood A.R. Dixon R.A. Mabry T.J. Estrogenic flavonoids from Artemisia vulgaris L. J. Agric. Food Chem. 1998 46 8 3325 3329 10.1021/jf9801264
    [Google Scholar]
  52. Sharma K.R. Adhikari S. Phytochemical analysis and biological activities of Artemisia vulgaris grown in different altitudes of Nepal. Int. J. Food Prop. 2023 26 1 414 427 10.1080/10942912.2023.2166954
    [Google Scholar]
  53. Afzal K. Uzair M. Chaudhary B.A. Ahmad A. Afzal S. Saadullah M. Genus ruellia: Pharmacological and phytochemical importance in ethnopharmacology. Acta Pol. Pharm. 2015 72 5 821 827 26665388
    [Google Scholar]
  54. Chavan J.J. Gaikwad N.B. Kshirsagar P.R. Dixit G.B. Total phenolics, flavonoids and antioxidant properties of three Ceropegia species from Western Ghats of India. S. Afr. J. Bot. 2013 88 273 277 10.1016/j.sajb.2013.08.007
    [Google Scholar]
  55. Kenchappa P.G. Karthik Y. Vijendra P.D. In vitro evaluation of the neuroprotective potential of Olea dioica against Aβ peptide-induced toxicity in human neuroblastoma SH-SY5Y cells. Front. Pharmacol. 2023 14 1139606 10.3389/fphar.2023.1139606 37234712
    [Google Scholar]
  56. Vogl C. Mochida S. Wolff C. Whalley B.J. Stephens G.J. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol. Pharmacol. 2012 82 2 199 208 10.1124/mol.111.076687 22554805
    [Google Scholar]
  57. Ceccarini M.R. Cardinali M.A. Libera V. Scattini G. Codini M. Chiesa I. Protective effects of silk fibroin against 6-OHDA in SH-SY5Y human neuroblastoma cells and comparative study with its release from gelatin films. Int. J. Biol. Macromol. 2025 Epub ahead of print10.1016/j.ijbiomac.2025.140697 39914551
    [Google Scholar]
  58. Singh R. Chandel S. Ghosh A. Glucogallin attenuates the LPS-induced signaling in macrophages and protects mice against sepsis. Int. J. Mol. Sci. 2022 23 19 11254 10.3390/ijms231911254 36232563
    [Google Scholar]
  59. Kumar S. Singh R. Dutta D. In vitro anticancer activity of methanolic extract of Justicia adhatoda leaves with special emphasis on human breast cancer cell line. Molecules 2022 27 23 8222 10.3390/molecules27238222 36500313
    [Google Scholar]
  60. Chandel S. Bhattacharya A. Gautam A. Investigation of the anti-cancer potential of epoxyazadiradione in neuroblastoma: Experimental assays and molecular analysis. J. Biomol. Struct. Dyn. 2023 2023 1 9 37753734
    [Google Scholar]
  61. Charan J. Kantharia N.D. How to calculate sample size in animal studies? J. Pharmacol. Pharmacother. 2013 4 4 303 306 10.4103/0976‑500X.119726 24250214
    [Google Scholar]
  62. Wan Mohammad W.M.Z. Zahiruddin W.M. Sample size calculation in animal studies using resource equation approach. Malays. J. Med. Sci. 2017 24 5 101 105 10.21315/mjms2017.24.5.11 29386977
    [Google Scholar]
  63. Arirudran B. Saraswathy A. Krishnamurthy V. Pharmacognostic and preliminary phytochemical studies on Ruellia tuberosa L. (whole plant). Pharmacogn. J. 2011 3 22 29 34 10.5530/pj.2011.22.6
    [Google Scholar]
  64. Priyadarshini K.A. Rao S. Kumar S. Raju D. Antihyperlipidemic activity of Ruellia tuberosa root extract. Int J Med Res Pharm Sci 2020 7 3 12 32
    [Google Scholar]
  65. Shahwara D. Ullah S. Ahmad M. Ullah S. Ahmad N. Khan M.A. Hypoglycemic activity of Ruellia tuberosa linn (Acanthaceae) in normal and alloxan-induced diabetic rabbits. Iran J Pharm Sci 2011 7 2 107 115
    [Google Scholar]
  66. Kumar N. Sharma N. Khera R. Gupta R. Mehan S. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metab. Brain Dis. 2021 36 5 911 925 10.1007/s11011‑021‑00691‑x 33635478
    [Google Scholar]
  67. Khan S. Khan H.U. Khan F.A. Anti-alzheimer and antioxidant effects of Nelumbo nucifera L. alkaloids, nuciferine and norcoclaurine in alloxan-induced diabetic albino rats. Pharmaceuticals 2022 15 10 1205 10.3390/ph15101205 36297317
    [Google Scholar]
  68. Wang J. Zhu H. Wang K. Yang Z. Liu Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. Environ. Sci. Pollut. Res. Int. 2020 27 20 25278 25286 10.1007/s11356‑020‑08947‑2 32347499
    [Google Scholar]
  69. Subash S. Essa M.M. Braidy N. Consumption of fig fruits grown in Oman can improve memory, anxiety, and learning skills in a transgenic mice model of Alzheimer’s disease. Nutr. Neurosci. 2016 19 10 475 483 10.1179/1476830514Y.0000000131 24938828
    [Google Scholar]
  70. Rabiei Z. Setorki M. Effect of hydroalcoholic Echium amoenum extract on scopolamine-induced learning and memory impairment in rats. Pharm. Biol. 2018 56 1 672 677 10.1080/13880209.2018.1543330 31070534
    [Google Scholar]
  71. Liu D. Du D. Mulberry fruit extract alleviates cognitive impairment by promoting the clearance of amyloid-β and inhibiting neuroinflammation in Alzheimer’s disease mice. Neurochem. Res. 2020 45 9 2009 2019 10.1007/s11064‑020‑03062‑7 32488469
    [Google Scholar]
  72. Danish S.M. Gupta A. Khan U.A. Intranasal cerium oxide nanoparticles ameliorate cognitive function in rats with alzheimer’s via anti-oxidative pathway. Pharmaceutics 2022 14 4 756 10.3390/pharmaceutics14040756 35456590
    [Google Scholar]
  73. Hussien HM Abd-Elmegied A Ghareeb DA Hafez HS Ahmed HE Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem Toxicol 2024 1 111 432 44 10.1016/j.fct.2017.11.025
    [Google Scholar]
  74. Leger M. Quiedeville A. Bouet V. Object recognition test in mice. Nat. Protoc. 2013 8 12 2531 2537 10.1038/nprot.2013.155 24263092
    [Google Scholar]
  75. Rajdev K. Siddiqui E.M. Jadaun K.S. Mehan S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats. IBRO reports 2020 8 101 114
    [Google Scholar]
  76. Mishra S.K. Rout K. Prusty S.K. Sahu P.K. Shodhana decreases nootropic activity of Semecarpus anacardium. Asian J. Pharm. Clin. Res. 2016 9 294 297 10.22159/ajpcr.2016.v9s2.13989
    [Google Scholar]
  77. Dulla B.S. S B, K LP. A Study on the Effect of Valeric Acid in Alzheimer’s Induced Rats by the Estimation of Aβ 1-42 Biomarker. J Health Allied Sci 2022 12 2 134 138 10.1055/s‑0041‑1736274
    [Google Scholar]
  78. Fuchs M. Viel C. Lehto A. Lau H. Klein J. Oxidative stress in rat brain during experimental status epilepticus: Effect of antioxidants. Front. Pharmacol. 2023 14 1233184 10.3389/fphar.2023.1233184 37767398
    [Google Scholar]
  79. Sedlak J. Lindsay R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem. 1968 25 1 192 205 10.1016/0003‑2697(68)90092‑4 4973948
    [Google Scholar]
  80. Shafi S. Evaluation of in vivo anti-oxidant activity of Mentha Arvensis Linn in rat brain homogenates. World J. Pharm. Res. 2017 6 9 693 714 10.20959/wjpr20179‑9241
    [Google Scholar]
  81. Ellman G.L. Courtney K.D. Andres V. Featherstone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961 7 2 88 95 10.1016/0006‑2952(61)90145‑9 13726518
    [Google Scholar]
  82. Marklund S. Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974 47 3 469 474 10.1111/j.1432‑1033.1974.tb03714.x 4215654
    [Google Scholar]
  83. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  84. Lück H. Catalase. Methods of Enzymatic Analysis. Academic Press 1965 885 894 10.1016/B978‑0‑12‑395630‑9.50158‑4
    [Google Scholar]
  85. Doumas B.T. Kwok-Cheung P.P. Perry B.W. Candidate reference method for determination of total bilirubin in serum: Development and validation. Clin. Chem. 1985 31 11 1779 1789 10.1093/clinchem/31.11.1779 4053346
    [Google Scholar]
  86. Alluri R. Kilari E.K. Pasala P.K. Kopalli S.R. Koppula S. Repurposing diltiazem for its neuroprotective anti-dementia role against intra-cerebroventricular streptozotocin-induced sporadic Alzheimer’s disease-type rat model. Life 2023 13 8 1688 10.3390/life13081688 37629545
    [Google Scholar]
  87. Giri A. Mehan S. Khan Z. Gupta G.D. Narula A.S. Melatonin-mediated IGF-1/GLP-1 activation in experimental OCD rats: Evidence from CSF, blood plasma, brain and in-silico investigations. Biochem. Pharmacol. 2023 217 115831 10.1016/j.bcp.2023.115831 37777162
    [Google Scholar]
  88. Paidi R.K. Sarkar S. Ambareen N. Biswas S.C. Medha Plus: A novel polyherbal formulation ameliorates cognitive behaviors and disease pathology in models of Alzheimer’s disease. Biomed. Pharmacother. 2022 151 113086 10.1016/j.biopha.2022.113086 35617801
    [Google Scholar]
  89. Yadav V. Mythri C. Kumarasamy M. Natural products as potential modulators of pro-inflammatory cytokines signalling in Alzheimer’s disease. Brain Behavior and Immunity Integrative. 2024 5 100048 10.1016/j.bbii.2024.100048
    [Google Scholar]
  90. Tuppo E.E. Arias H.R. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol. 2005 37 2 289 305 10.1016/j.biocel.2004.07.009 15474976
    [Google Scholar]
  91. Salam S.A. Asirvatham R. Augustine D.P. Mathew A.A. Johns B. Neuroprotective effect of Vanda Tessellata As “Rasna” species, on aluminium chloride induced Alzheimer’S in rats. J. Microbiol. Biotechnol. Food Sci. 2022 12 1 1 9
    [Google Scholar]
  92. Mahnashi M.H. Ashraf M. Alhasaniah A.H. Polyphenol-enriched Desmodium elegans DC. ameliorate scopolamine-induced amnesia in animal model of Alzheimer’s disease: In vitro, in vivo and in silico approaches. Biomed. Pharmacother. 2023 165 115144 10.1016/j.biopha.2023.115144 37437376
    [Google Scholar]
  93. Tuzimski T. Petruczynik A. Determination of anti-alzheimer’s disease activity of selected plant ingredients. Molecules 2022 27 10 3222 10.3390/molecules27103222 35630702
    [Google Scholar]
  94. Rasheed Z. Therapeutic potentials of catalase: Mechanisms, applications, and future perspectives. Int. J. Health Sci. (Qassim) 2024 18 2 1 6 38455600
    [Google Scholar]
  95. Dhapola R. Beura S.K. Sharma P. Singh S.K. HariKrishnaReddy D. Oxidative stress in Alzheimer’s disease: Current knowledge of signaling pathways and therapeutics. Mol. Biol. Rep. 2024 51 1 48 10.1007/s11033‑023‑09021‑z 39570444
    [Google Scholar]
  96. Syafrita Y. Amir D. Susanti R. El Rasyid H. Beta amyloid and malondialdehyde serum levels’ analysis in atrial fibrillation patients with cognitive impairment. Neurol. India 2022 70 2 689 693 10.4103/0028‑3886.344660 35532640
    [Google Scholar]
  97. Maciejczyk M. Żebrowska E. Zalewska A. Chabowski A. Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxid. Med. Cell. Longev. 2018 2018 6940515 10.1155/2018/6940515
    [Google Scholar]
  98. Johnson F. Giulivi C. Superoxide dismutases and their impact upon human health. Mol. Aspects Med. 2005 26 4-5 340 10.1016/j.mam.2005.07.006
    [Google Scholar]
  99. Saxena P. Selvaraj K. Khare S.K. Chaudhary N. Superoxide dismutase as multipotent therapeutic antioxidant enzyme: Role in human diseases. Biotechnol. Lett. 2022 44 1 1 22 10.1007/s10529‑021‑03200‑3 34734354
    [Google Scholar]
  100. Sultana R. Butterfield D.A. Protein oxidation in aging and Alzheimer’s Disease brain. Antioxidants 2024 13 5 574 10.3390/antiox13050574 38790679
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708364435250604032539
Loading
/content/journals/raiad/10.2174/0127722708364435250604032539
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: RTEE ; Ruellia tuberosa ; wistar rat ; Alzheimer’s ; SHSY-5Y ; aluminum chloride
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test