Skip to content
2000
image of Clinical Insights into Protein-based Therapies for Precision Targeting of Psoriasis

Abstract

Psoriasis (PsR), a chronic autoimmune disorder, affects millions of individuals globally and has a substantial impact on their quality of life. This complex condition involves intricate molecular networks and signaling pathways, making the development of effective treatments a significant challenge. Moreover, to advance treatment options, precise targeting of cells through the identification of protein biomarkers in PsR has emerged as a promising field of research for both fundamental and clinical scientists. These protein components provide valuable insights into the underlying mechanisms of the disease and can serve as indicators of treatment response. Furthermore, by identifying specific biocomponents, researchers can develop targeted therapeutics that address the molecular abnormalities driving PsR. The use of biologics as potential targets for improving treatment efficacy is a significant focus in PsR research. Biologics, which include monoclonal antibodies and fusion proteins, specifically target key molecules involved in the immune response, such as tumor necrosis factor-alpha (TNF-α) and interleukins (IL). These targeted therapies have demonstrated substantial efficacy in managing PsR by modulating the immune system and reducing inflammation. Recent advancements in molecular-targeted therapies utilizing biologics or small-molecule inhibitors have contributed to improving patient outcomes. This review aims to summarize the recent discoveries and insights regarding biocomponents and their importance in treating PsR, encompassing both its inflammatory and dermatological aspects. Furthermore, the review discusses the commercial outcomes of ongoing clinical trials for various biological-based therapeutic modalities for PsR, providing valuable insights into the evolving landscape of PsR therapeutics. These developments indicate the growing interest and investment in improving treatment options for individuals living with PsR.

Loading

Article metrics loading...

/content/journals/raiad/10.2174/0127722708331606250128063129
2025-02-06
2025-09-04
Loading full text...

Full text loading...

References

  1. Yadav K. Singh D. Singh M.R. Preclinical study models of psoriasis: State-of-the-art techniques for testing pharmaceutical products in animal and nonanimal models. Int. Immunopharmacol. 2023 117 109945 10.1016/j.intimp.2023.109945 36871534
    [Google Scholar]
  2. Yadav K. Singh D. Singh M.R. Pradhan M. Multifaceted targeting of cationic liposomes via co-delivery of anti-il-17 sirna and corticosteroid for topical treatment of psoriasis. Med. Hypotheses 2020 145 110322 10.1016/j.mehy.2020.110322 33086162
    [Google Scholar]
  3. Pradhan M. Alexander A. Singh M.R. Statistically optimized calcipotriol fused nanostructured lipid carriers for effectual topical treatment of psoriasis. J. Drug Deliv. Sci. Technol. 2021 61 102168 10.1016/j.jddst.2020.102168
    [Google Scholar]
  4. Rawat Singh M Singh D Sahu KK Pradhan M Yadav K A method of preparation of Triamcinolone Acetonide encapsulated nanostructured lipid carriers for psoriasis treatment. AU2021106678A4 2021
    [Google Scholar]
  5. Ahuja A. Gupta J. Gupta R. Miracles of herbal phytomedicines in treatment of skin disorders: Natural healthcare perspective. Infect. Disord. Drug Targets 2021 21 3 328 338 10.2174/1871526520666200622142710 32568024
    [Google Scholar]
  6. Singh D Pradhan M Shrivastava S Murthy SN Singh MR Skin autoimmune disorders: Lipid biopolymers and colloidal delivery systems for topical delivery Nanobiomat Galen Formulat Cosmet 2016 1 1 257 96 10.1016/B978‑0‑323‑42868‑2.00011‑5
  7. Gargiulo L. Ibba L. Malagoli P. Drug survival of il-12/23, il-17 and il-23 inhibitors for moderate-to-severe plaque psoriasis: A retrospective multicenter real-world experience on 5932 treatment courses – il pso (italian landscape psoriasis). Front. Immunol. 2024 14 1341708 10.3389/fimmu.2023.1341708 38274801
    [Google Scholar]
  8. Mongia P.R. Amrita M.S. Sahu K. Chapter 5 - Multifunctional nanocarrier-mediated delivery for targeting and treating skin cancer. In: Yad av AK, Shukla R, Chapter 5 Yadav A.K. Shukla R. Ujjwal, RR Eds. Multifunct Nanocomposites Target Drug Deliv Cancer Ther 2024 113 138 10.1016/B978‑0‑323‑95303‑0.00013‑7
    [Google Scholar]
  9. Rønholt K. Iversen L. Old and new biological therapies for psoriasis. Int. J. Mol. Sci. 2017 18 11 2297 10.3390/ijms18112297 29104241
    [Google Scholar]
  10. Yadav K. Kumar Sahu K. Sucheta R. A complex molecular landscape to drug delivery concept for achieving precise therapy in psoriasis. Med. Drug Discov. 2024 22 2024 1 23 10.1016/j.medidd.2024.100183
    [Google Scholar]
  11. Pradhan M. Singh D. Singh M.R. Fabrication, optimization and characterization of triamcinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis: Application of box behnken design, in vitro and ex vivo studies. J. Drug Deliv. Sci. Technol. 2017 41 325 333 10.1016/j.jddst.2017.07.024
    [Google Scholar]
  12. Herzog V. Kirfel G. Siemes C. Schmitz A. Biological roles of app in the epidermis. Eur. J. Cell Biol. 2004 83 11-12 613 624 10.1078/0171‑9335‑00401 15679106
    [Google Scholar]
  13. Albanesi C. Scarponi C. Bosisio D. Sozzani S. Girolomoni G. Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity 2010 43 3 215 219 10.3109/08916930903510906 20166874
    [Google Scholar]
  14. Hald A. Andrés R.M. Salskov-Iversen M.L. Kjellerup R.B. Iversen L. Johansen C. Stat1 expression and activation is increased in lesional psoriatic skin. Br. J. Dermatol. 2013 168 2 302 310 10.1111/bjd.12049 23013371
    [Google Scholar]
  15. Pradhan M. Shah K. Alexander A. Covid-19: Clinical presentation and detection methods. J. Immunoassay Immunochem. 2022 43 1 1951291 10.1080/15321819.2021.1951291 34355645
    [Google Scholar]
  16. Sahu K.K. Pradhan M. Singh D. Singh M.R. Yadav K. Non-viral nucleic acid delivery approach: A boon for state-of-the-art gene delivery. J. Drug Deliv. Sci. Technol. 2023 80 104152 10.1016/j.jddst.2023.104152
    [Google Scholar]
  17. Yadav K. Sucheta R. Vijayalakshmi R. Phyto-nanomedicine for the treatment of autoimmune and other related skin disorders. Med Appl Phytopharm 2024 159 190 10.1007/978‑3‑031‑63677‑6_10
    [Google Scholar]
  18. Singh S.K. Dwivedi S.D. Yadav K. Novel biotherapeutics targeting biomolecular and cellular approaches in diabetic wound healing. Biomedicines 2023 11 2 613 10.3390/biomedicines11020613 36831151
    [Google Scholar]
  19. Pradhan M. Singh D. Singh M.R. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. J. Control. Release 2013 170 3 380 395 10.1016/j.jconrel.2013.05.020 23770117
    [Google Scholar]
  20. Reindl J. Pesek J. Krüger T. Proteomic biomarkers for psoriasis and psoriasis arthritis. J. Proteomics 2016 140 55 61 10.1016/j.jprot.2016.03.040 27063990
    [Google Scholar]
  21. Jiang S. Hinchliffe T.E. Wu T. Biomarkers of an autoimmune skin disease—psoriasis. Genomics Proteomics Bioinformatics 2015 13 4 224 233 10.1016/j.gpb.2015.04.002 26362816
    [Google Scholar]
  22. Purzycka-Bohdan D. Nedoszytko B. Zabłotna M. Gleń J. Szczerkowska-Dobosz A. Nowicki R.J. Chemokine profile in psoriasis patients in correlation with disease severity and pruritus. Int. J. Mol. Sci. 2022 23 21 13330 10.3390/ijms232113330 36362116
    [Google Scholar]
  23. Keijsers R.R.M.C. Hendriks A.G.M. van Erp P.E.J. In vivo induction of cutaneous inflammation results in the accumulation of extracellular trap-forming neutrophils expressing rorγt and il-17. J. Invest. Dermatol. 2014 134 5 1276 1284 10.1038/jid.2013.526 24317395
    [Google Scholar]
  24. Rahman M.A. Abul Barkat H. Harwansh R.K. Deshmukh R. Carbon-based nanomaterials: Carbon nanotubes, graphene, and fullerenes for the control of burn infections and wound healing. Curr. Pharm. Biotechnol. 2022 23 12 1483 1496 10.2174/1389201023666220309152340 35264085
    [Google Scholar]
  25. Tiwari P. Yadav K. Shukla R.P. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J. Control. Release 2023 363 290 348 10.1016/j.jconrel.2023.09.016 37714434
    [Google Scholar]
  26. Wang W.M. Jin H.Z. Biologics in the treatment of pustular psoriasis. Expert Opin. Drug Saf. 2020 19 8 969 980 10.1080/14740338.2020.1785427 32615817
    [Google Scholar]
  27. Wang J. Wang Y.M.C. Ahn H.Y. Biological products for the treatment of psoriasis: Therapeutic targets, pharmacodynamics and disease-drug-drug interaction implications. AAPS J. 2014 16 5 938 947 10.1208/s12248‑014‑9637‑0 24993574
    [Google Scholar]
  28. Turina M.C. Landewé R. Baeten D. Lessons to be learned from serum biomarkers in psoriasis and ibd – the potential role in spa. Expert Rev. Clin. Immunol. 2017 13 4 333 344 10.1080/1744666X.2017.1244004 27705027
    [Google Scholar]
  29. Pradhan M. Singh D. Murthy S.N. Singh M.R. Design, characterization and skin permeating potential of fluocinolone acetonide loaded nanostructured lipid carriers for topical treatment of psoriasis. Steroids 2015 101 56 63 10.1016/j.steroids.2015.05.012 26049018
    [Google Scholar]
  30. Lindroos J. Svensson L. Norsgaard H. Il-23-mediated epidermal hyperplasia is dependent on il-6. J. Invest. Dermatol. 2011 131 5 1110 1118 10.1038/jid.2010.432 21289639
    [Google Scholar]
  31. Cheung K.L. Jarrett R. Subramaniam S. Psoriatic t cells recognize neolipid antigens generated by mast cell phospholipase delivered by exosomes and presented by cd1a. J. Exp. Med. 2016 213 11 2399 2412 10.1084/jem.20160258 27670592
    [Google Scholar]
  32. van de Kerkhof P.C.M. From empirical to pathogenesis-based treatments for psoriasis. J. Invest. Dermatol. 2022 142 7 1778 1785 10.1016/j.jid.2022.01.014 35249726
    [Google Scholar]
  33. Nema N.K. Chaudhary S.K. Kar A. Chapter 7 - Bioactive leads for skin aging—current scenario and future perspectives. In: Mukherjee SE, Ed. 2022 185 222 10.1016/B978‑0‑323‑85542‑6.00020‑2
    [Google Scholar]
  34. Ahuja A. Bajpai M. Nanoformulations insights: A novel paradigm for antifungal therapies and future perspectives. Curr. Drug Deliv. 2024 21 9 1241 1272 10.2174/0115672018270783231002115728
    [Google Scholar]
  35. Yadav R. Pradhan M. Yadav K. Mahalvar A. Yadav H. Present scenarios and future prospects of herbal nanomedicine for antifungal therapy. J. Drug Deliv. Sci. Technol. 2022 74 103430 10.1016/j.jddst.2022.103430 35582019
    [Google Scholar]
  36. Miossec P. Kolls J.K. Targeting il-17 and th17 cells in chronic inflammation. Nat. Rev. Drug Discov. 2012 11 10 763 776 10.1038/nrd3794 23023676
    [Google Scholar]
  37. Yadav H. Mahalvar A. Pradhan M. Yadav K. Kumar Sahu K. Yadav R. Exploring the potential of phytochemicals and nanomaterial: A boon to antimicrobial treatment. Med. Drug Discov. 2023 17 6 100151 10.1016/j.medidd.2023.100151
    [Google Scholar]
  38. Zhou X. Chen Y. Cui L. Shi Y. Guo C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis. 2022 13 1 81 10.1038/s41419‑022‑04523‑3 35075118
    [Google Scholar]
  39. Rashmi R. Rao K.S.J. Basavaraj K.H. A comprehensive review of biomarkers in psoriasis. Clin. Exp. Dermatol. 2009 34 6 658 663 10.1111/j.1365‑2230.2009.03410.x 19558584
    [Google Scholar]
  40. Yadav K. Singh D. Singh M.R. Nanovesicles delivery approach for targeting steroid mediated mechanism of antipsoriatic therapeutics. J. Drug Deliv. Sci. Technol. 2021 65 102688 10.1016/j.jddst.2021.102688
    [Google Scholar]
  41. Yadav K. Pradhan M. Singh D. Singh M.R. Targeting autoimmune disorders through metal nanoformulation in overcoming the fences of conventional treatment approaches. In: Rezaei N, Ed. Transl Autoimmun. Rezaei N. 2022 361 393 10.1016/B978‑0‑12‑824390‑9.00017‑7
    [Google Scholar]
  42. Lynde C.W. Poulin Y. Vender R. Bourcier M. Khalil S. Interleukin 17a: Toward a new understanding of psoriasis pathogenesis. J. Am. Acad. Dermatol. 2014 71 1 141 150 10.1016/j.jaad.2013.12.036 24655820
    [Google Scholar]
  43. Ha H.L. Wang H. Pisitkun P. Il-17 drives psoriatic inflammation via distinct, target cell-specific mechanisms. Proc. Natl. Acad. Sci. USA 2014 111 33 E3422 E3431 10.1073/pnas.1400513111 25092341
    [Google Scholar]
  44. Pradhan M. Yadav K. Singh D. Singh M.R. Topical delivery of fluocinolone acetonide integrated nlcs and salicylic acid enriched gel: A potential and synergistic approach in the management of psoriasis. J. Drug Deliv. Sci. Technol. 2021 61 102282 10.1016/j.jddst.2020.102282
    [Google Scholar]
  45. Yadav K. Soni A. Singh D. Singh M.R. Polymers in topical delivery of anti-psoriatic medications and other topical agents in overcoming the barriers of conventional treatment strategies. Prog. Biomater. 2021 10 1 1 17 10.1007/s40204‑021‑00154‑7 33738750
    [Google Scholar]
  46. Marepally S. Boakye C.H.A. Patel A.R. Topical administration of dual sirnas using fusogenic lipid nanoparticles for treating psoriatic-like plaques. Nanomedicine (Lond.) 2014 9 14 2157 2174 10.2217/nnm.13.202 24593003
    [Google Scholar]
  47. Kim W.B. Jerome D. Yeung J. Diagnosis and management of psoriasis. Can. Fam. Physician 2017 63 4 278 285 28404701
    [Google Scholar]
  48. Wong T. Hsu L. Liao W. Phototherapy in psoriasis: A review of mechanisms of action. J. Cutan. Med. Surg. 2013 17 1 6 12 10.2310/7750.2012.11124 23364144
    [Google Scholar]
  49. Thakur A Nagori K Rao A Rai N Use of deep learning approaches for the prediction of diseases from medical images 2024 115 38
    [Google Scholar]
  50. Nylander K. Gu X. Nylander E. Coates P.J. Effect of narrow-band ultraviolet b phototherapy on p63 and microrna (mir-21 and mir-125b) expression in psoriatic epidermis. Acta Derm. Venereol. 2011 91 4 392 397 10.2340/00015555‑1086 21373745
    [Google Scholar]
  51. Weigle N. McBane S. Psoriasis. Am. Fam. Physician 2013 87 9 626 633 23668525
    [Google Scholar]
  52. Chavoshy F. Zadeh B.S.M. Tamaddon A.M. Anbardar M.H. Delivery and anti-psoriatic effect of silibinin-loaded polymeric micelles: An experimental study in the psoriatic skin model. Curr. Drug Deliv. 2020 17 9 787 798 10.2174/1567201817666200722141807 32703129
    [Google Scholar]
  53. Yadav K. Singh D. Singh M.R. Dermal nanomedicine: Uncovering the ability of nucleic acid to alleviate autoimmune and other related skin disorders. J. Drug Deliv. Sci. Technol. 2022 73 103437 10.1016/j.jddst.2022.103437
    [Google Scholar]
  54. Pradhan M. Singh D. Singh M.R. Influence of selected variables on fabrication of triamcinolone acetonide loaded solid lipid nanoparticles for topical treatment of dermal disorders. Artif. Cells Nanomed. Biotechnol. 2016 44 1 392 400 10.3109/21691401.2014.955105 25229831
    [Google Scholar]
  55. Pradhan M. Srivastava S. Singh D. Saraf S. Saraf S. Singh M.R. Perspectives of lipid-based drug carrier systems for transdermal delivery. Crit. Rev. Ther. Drug Carrier Syst. 2018 35 4 331 367 10.1615/CritRevTherDrugCarrierSyst.2018020856 29972681
    [Google Scholar]
  56. Pradhan M. Alexander A. Singh M.R. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother. 2018 107 447 463 10.1016/j.biopha.2018.07.156 30103117
    [Google Scholar]
  57. Qiu S. Cai Y. Yao H. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023 8 1 132 10.1038/s41392‑023‑01399‑3 36941259
    [Google Scholar]
  58. Abdelaziz E.H. Ismail R. Mabrouk M.S. Amin E. Multi-omics data integration and analysis pipeline for precision medicine: Systematic review. Comput. Biol. Chem. 2024 113 108254 10.1016/j.compbiolchem.2024.108254 39447405
    [Google Scholar]
  59. Feczko E. Fair D.A. Methods and challenges for assessing heterogeneity. Biol. Psychiatry 2020 88 1 9 17 10.1016/j.biopsych.2020.02.015 32386742
    [Google Scholar]
  60. Suravajhala P. Goltsov A. Three grand challenges in high throughput omics technologies. Biomolecules 2022 12 9 1238 10.3390/biom12091238 36139077
    [Google Scholar]
  61. Di Minno A. Gelzo M. Caterino M. Costanzo M. Ruoppolo M. Castaldo G. Challenges in metabolomics-based tests, biomarkers revealed by metabolomic analysis, and the promise of the application of metabolomics in precision medicine. Int. J. Mol. Sci. 2022 23 9 5213 10.3390/ijms23095213 35563604
    [Google Scholar]
  62. Cummings R.D. Pierce J.M. The challenge and promise of glycomics. Chem. Biol. 2014 21 1 1 15 10.1016/j.chembiol.2013.12.010 24439204
    [Google Scholar]
  63. Yadav K. Singh D. Singh M.R. Novel archetype in psoriasis management bridging molecular dynamics in exploring novel therapies. Eur. J. Pharmacol. 2021 907 174254 10.1016/j.ejphar.2021.174254 34118225
    [Google Scholar]
  64. Tiwari P. Yadav K. Shukla R.P. Extracellular vesicles-powered immunotherapy: Unleashing the potential for safer and more effective cancer treatment. Arch. Biochem. Biophys. 2024 756 110022 10.1016/j.abb.2024.110022 38697343
    [Google Scholar]
  65. Yadav K. Singh D. Singh M.R. Development and characterization of corticosteroid loaded lipid carrier system for psoriasis. RESEARCH JOURNAL OF PHARMACY AND TECHNOLOGY 2021 14 2 966 970 10.5958/0974‑360X.2021.00172.4
    [Google Scholar]
  66. Nikam R.V. Gowtham M. More P.S. Shinde A.S. Current and emerging prospects in the psoriatic treatment. Int. Immunopharmacol. 2023 120 110331 10.1016/j.intimp.2023.110331 37210912
    [Google Scholar]
  67. Schadler E.D. Ortel B. Mehlis S.L. Biologics for the primary care physician: Review and treatment of psoriasis. Dis. Mon. 2019 65 3 51 90 10.1016/j.disamonth.2018.06.001 30037762
    [Google Scholar]
  68. Singh M.R. Yadav K. Chaurasiya N.D. Singh D. Immune system and mechanism of immunomodulation. In: Sangwan NS, Farag MA, Modolo LV, Eds. Plants Phytomolecules Immunomodulation Recent Trends Adv. Farag M.A. Modolo L.V. 2022 1 31 10.1007/978‑981‑16‑8117‑2_1
    [Google Scholar]
  69. Yadav K. Ajazuddin A. Anisamide-Anchored Lyotropic Nano-Liquid Crystalline Particles with AIE Effect: A Smart Optical Beacon for Tumor Imaging and Therapy. ACS Applied. Materials. & Interfaces 2024 10 15 10.1007/978‑981‑97‑3925‑7_1
    [Google Scholar]
  70. Singh D. Singh S. Sahu J. Srivastava S. Singh M.R. Ceramic nanoparticles: Recompense, cellular uptake and toxicity concerns. Artif. Cells Nanomed. Biotechnol. 2016 44 1 401 409 10.3109/21691401.2014.955106 25229834
    [Google Scholar]
  71. Dewangan D. Ajazuddin P. Agrawal P. Formulation and evaluation of oral reconstitutable azithromycin suspension for the treatment of bacterial infection. Research Journal of Pharmacy and Technology 2018 11 4 1351 1354 10.5958/0974‑360X.2018.00251.2
    [Google Scholar]
  72. Volc S. Ghoreschi K. Pathophysiologische grundlagen der systemtherapien bei psoriasis, jddg - j. Ger Soc Dermatology 2016 14 557 573 10.1111/ddg.13050 27240060
    [Google Scholar]
  73. Kurzeja M. Rudnicka L. Olszewska M. New interleukin-23 pathway inhibitors in dermatology: Ustekinumab, briakinumab, and secukinumab. Am. J. Clin. Dermatol. 2011 12 2 113 125 10.2165/11538950‑000000000‑00000 21348542
    [Google Scholar]
  74. Travaglini M. Maul J.T. Kors C. Effectiveness of biologics, patient-reported outcomes, and clinical photography in a subset of patients with moderate-to-severe psoriasis: Week 12 results from the psoriasis study of health outcomes (psoho). Clin. Cosmet. Investig. Dermatol. 2023 16 2971 2983 10.2147/CCID.S426972 37881205
    [Google Scholar]
  75. Piaserico S. Riedl E. Pavlovsky L. Comparative effectiveness of biologics for patients with moderate-to-severe psoriasis and special area involvement: Week 12 results from the observational psoriasis study of health outcomes (psoho). Front. Med. (Lausanne) 2023 10 1185523 10.3389/fmed.2023.1185523 37457564
    [Google Scholar]
  76. Van Muijen M.E. Thomas S.E. Groenewoud H.M.M. Direct comparison of real-world effectiveness of biologics for psoriasis using absolute and relative psoriasis area and severity index scores in a prospective multicentre cohort. Acta Derm. Venereol. 2022 102 adv00712 10.2340/actadv.v102.206 35356990
    [Google Scholar]
  77. Armstrong A.W. Puig L. Joshi A. Comparison of biologics and oral treatments for plaque psoriasis. JAMA Dermatol. 2020 156 3 258 269 10.1001/jamadermatol.2019.4029 32022825
    [Google Scholar]
  78. Sutaria N. Au S.C. Failure rates and survival times of systemic and biologic therapies in treating psoriasis: A retrospective study. J. Dermatolog. Treat. 2021 32 6 617 620 10.1080/09546634.2019.1688756 31682477
    [Google Scholar]
  79. Gottlieb A.B. Tumor necrosis factor blockade: Mechanism of action. J. Investig. Dermatol. Symp. Proc. 2007 12 1 1 4 10.1038/sj.jidsymp.5650029 17502861
    [Google Scholar]
  80. Tonel G. Conrad C. Laggner U. Cutting edge: A critical functional role for il-23 in psoriasis. J. Immunol. 2010 185 10 5688 5691 10.4049/jimmunol.1001538 20956338
    [Google Scholar]
  81. Minz S. Rawat Singh M. Singh D. Parihar A. Pradhan M. Biotechnology-based prodrug approach for cell-specific targeting: its theoretical basis and application. Rec Adv Prodr 2020 317 332 10.1201/9780429328275‑14
    [Google Scholar]
  82. Agrawal M. Saraf S. Pradhan M. Design and optimization of curcumin loaded nano lipid carrier system using box-behnken design. Biomed. Pharmacother. 2021 141 111919 10.1016/j.biopha.2021.111919 34328108
    [Google Scholar]
  83. Yadav K Singh D Singh MR Pradhan M Nano-constructs targeting the primary cellular energy source of cancer cells for modulating tumor progression OpenNano 2022 08 2022 100107 10.1016/j.onano.2022.100107
  84. Meephansan J Subpayasarn U. Pathogenic Role of Cytokines and Effect of Their Inhibition in Psoriasis. An Interdisciplinary Approach to Psoriasis 2017 68421 10.5772/intechopen.68421
    [Google Scholar]
  85. Liu Y. Yang G. Zhang J. Anti-tnf-α monoclonal antibody reverses psoriasis through dual inhibition of inflammation and angiogenesis. Int. Immunopharmacol. 2015 28 1 731 743 10.1016/j.intimp.2015.07.036 26263167
    [Google Scholar]
  86. Gordon K.B. Warren R.B. Gottlieb A.B. Long‐term efficacy of certolizumab pegol for the treatment of plaque psoriasis: 3‐year results from two randomized phase iii trials (cimpasi‐1 and cimpasi‐2). Br. J. Dermatol. 2021 184 4 652 662 10.1111/bjd.19393 32652544
    [Google Scholar]
  87. Atiqi S. Hooijberg F. Loeff F.C. Rispens T. Wolbink G.J. Immunogenicity of tnf-inhibitors. Front. Immunol. 2020 11 312 10.3389/fimmu.2020.00312 32174918
    [Google Scholar]
  88. Carrascosa J.M. Jacobs I. Petersel D. Strohal R. Biosimilar drugs for psoriasis: Principles, present, and near future. Dermatol. Ther. (Heidelb.) 2018 8 2 173 194 10.1007/s13555‑018‑0230‑9 29549597
    [Google Scholar]
  89. Lebwohl M. Emer J. Koutruba N. Review of ustekinumab, an interleukin-12 and interleukin-23 inhibitor used for the treatment of plaque psoriasis. Ther. Clin. Risk Manag. 2010 6 123 141 10.2147/TCRM.S5599 20421912
    [Google Scholar]
  90. Boutet M.A. Nerviani A. Gallo Afflitto G. Pitzalis C. Role of the il-23/il-17 axis in psoriasis and psoriatic arthritis: The clinical importance of its divergence in skin and joints. Int. J. Mol. Sci. 2018 19 2 530 10.3390/ijms19020530 29425183
    [Google Scholar]
  91. Schön M.P. Erpenbeck L. The interleukin-23/interleukin-17 axis links adaptive and innate immunity in psoriasis. Front. Immunol. 2018 9 1323 10.3389/fimmu.2018.01323 29963046
    [Google Scholar]
  92. Valenti M. Narcisi A. Pavia G. Gargiulo L. Costanzo A. What can ibd specialists learn from il-23 trials in dermatology? J. Crohn’s Colitis 2022 16 Suppl. 2 ii20 ii29 10.1093/ecco‑jcc/jjac023 35553663
    [Google Scholar]
  93. Ruggiero A. Picone V. Martora F. Fabbrocini G. Megna M. Guselkumab, risankizumab, and tildrakizumab in the management of psoriasis: A review of the real-world evidence. Clin. Cosmet. Investig. Dermatol. 2022 15 1649 1658 10.2147/CCID.S364640 35996400
    [Google Scholar]
  94. Torres T. Selective interleukin-23 p19 inhibition: Another game changer in psoriasis? focus on risankizumab. Drugs 2017 77 14 1493 1503 10.1007/s40265‑017‑0794‑1 28770513
    [Google Scholar]
  95. Shukla R.P. Urandur S. Banala V.T. Development of putrescine anchored nano-crystalsomes bearing doxorubicin and oleanolic acid: Deciphering their role in inhibiting metastatic breast cancer. Biomater. Sci. 2021 9 5 1779 1794 10.1039/D0BM01033B 33443267
    [Google Scholar]
  96. Ruggiero A. Megna M. Fabbrocini G. Ocampo-Garza S.S. Anti-il23 biologic therapies in the treatment of psoriasis: Real-world experience versus clinical trials data. Immunol. Res. 2023 71 3 328 355 10.1007/s12026‑022‑09356‑y 36598647
    [Google Scholar]
  97. Nagori K. Pradhan M. Sharma M. Ajazuddin H.R. Badwaik H.R. Nakhate K.T. Current progress on central cholinergic receptors as therapeutic targets for alzheimer’s disease. Curr. Alzheimer Res. 2024 21 1 50 68 10.2174/0115672050306008240321034006 38529600
    [Google Scholar]
  98. Ghazawi F.M. Mahmood F. Kircik L. A review of the efficacy and safety for biologic agents targeting il-23 in treating psoriasis with the focus on tildrakizumab. Front. Med. (Lausanne) 2021 8 702776 10.3389/fmed.2021.702776 34447766
    [Google Scholar]
  99. Avallone G. Maronese C.A. Murgia G. Interleukin-17 vs. interleukin-23 inhibitors in pustular and erythrodermic psoriasis: A retrospective, multicentre cohort study. J. Clin. Med. 2023 12 4 1662 10.3390/jcm12041662 36836196
    [Google Scholar]
  100. Jinna S. Strober B. Anti-interleukin-17 treatment of psoriasis. J. Dermatolog. Treat. 2016 27 4 311 315 10.3109/09546634.2015.1115816 26943806
    [Google Scholar]
  101. Brembilla N.C. Senra L. Boehncke W.H. The il-17 family of cytokines in psoriasis: Il-17a and beyond. Front. Immunol. 2018 9 1682 10.3389/fimmu.2018.01682 30127781
    [Google Scholar]
  102. Spindeldreher S. Maillère B. Correia E. Secukinumab demonstrates significantly lower immunogenicity potential compared to ixekizumab. Dermatol. Ther. (Heidelb.) 2018 8 1 57 68 10.1007/s13555‑018‑0220‑y 29392570
    [Google Scholar]
  103. Wasilewska A. Winiarska M. Olszewska M. Rudnicka L. Interleukin-17 inhibitors. a new era in treatment of psoriasis and other skin diseases. Postepy Dermatol. Alergol. 2016 4 4 247 252 10.5114/ada.2016.61599 27605893
    [Google Scholar]
  104. Facheris P. Valenti M. Pavia G. Brodalumab: A new way to inhibit il ‐17 in psoriasis. Dermatol. Ther. 2020 33 3 e13403 10.1111/dth.13403 32285564
    [Google Scholar]
  105. Nakagawa H. Niiro H. Ootaki K. Brodalumab, a human anti-interleukin-17-receptor antibody in the treatment of japanese patients with moderate-to-severe plaque psoriasis: Efficacy and safety results from a phase ii randomized controlled study. J. Dermatol. Sci. 2016 81 1 44 52 10.1016/j.jdermsci.2015.10.009 26547109
    [Google Scholar]
  106. Conrad C. Gilliet M. Psoriasis: From pathogenesis to targeted therapies. Clin. Rev. Allergy Immunol. 2018 54 1 102 113 10.1007/s12016‑018‑8668‑1 29349534
    [Google Scholar]
  107. Stenderup K. Rosada C. Shanebeck K. Az17: A new bispecific drug targeting il-6 and il-23 with potential clinical use—improves psoriasis in a human xenograft transplantation model. Protein Eng. Des. Sel. 2015 28 10 467 480 10.1093/protein/gzv034 26271488
    [Google Scholar]
  108. Kaul M. Jarvis P. Rozenberg I. First‐in‐human study demonstrating the safety and clinical efficacy of novel anti‐il‐17a monoclonal antibody cjm112 in moderate to severe plaque psoriasis. J. Eur. Acad. Dermatol. Venereol. 2021 35 5 1143 1151 10.1111/jdv.17071 33617042
    [Google Scholar]
  109. Jeon C. Sekhon S. Yan D. Afifi L. Nakamura M. Bhutani T. Monoclonal antibodies inhibiting il-12, -23, and -17 for the treatment of psoriasis. Hum. Vaccin. Immunother. 2017 13 10 2247 2259 10.1080/21645515.2017.1356498 28825875
    [Google Scholar]
  110. Chong B.F. Wong H.K. Immunobiologics in the treatment of psoriasis. Clin. Immunol. 2007 123 2 129 138 10.1016/j.clim.2007.01.006 17317321
    [Google Scholar]
  111. Marwaha D. Gautam S. Singh N. Synergistic delivery of imatinib through multifunctional nano-crystalline capsules, in response to redox environment for improved breast cancer therapy. Colloids Surf. B Biointerfaces 2023 226 113316 10.1016/j.colsurfb.2023.113316 37086687
    [Google Scholar]
  112. Puig L. Bakulev A.L. Kokhan M.M. Efficacy and safety of netakimab, a novel anti-il-17 monoclonal antibody, in patients with moderate to severe plaque psoriasis. results of a 54-week randomized double-blind placebo-controlled planeta clinical trial. Dermatol. Ther. (Heidelb.) 2021 11 4 1319 1332 10.1007/s13555‑021‑00554‑4 34060012
    [Google Scholar]
  113. Boehncke W.H. Schön M.P. Psoriasis. Lancet 2015 386 9997 983 994 10.1016/S0140‑6736(14)61909‑7 26025581
    [Google Scholar]
  114. Schön M.P. Efalizumab in the treatment of psoriasis: Mode of action, clinical indications, efficacy, and safety. Clin. Dermatol. 2008 26 5 509 514 10.1016/j.clindermatol.2007.10.027 18755369
    [Google Scholar]
  115. Turbeville J.G. Patel N.U. Cardwell L.A. Oussedik E. Feldman S.R. Recent advances in small molecule and biological therapeutic approaches in the treatment of psoriasis. Clin. Pharmacol. Ther. 2017 102 1 70 85 10.1002/cpt.688 28317101
    [Google Scholar]
  116. Sarabia S. Ranjith B. Koppikar S. Wijeratne D.T. Efficacy and safety of jak inhibitors in the treatment of psoriasis and psoriatic arthritis: A systematic review and meta-analysis. BMC Rheumatol. 2022 6 1 71 10.1186/s41927‑022‑00287‑7 36163193
    [Google Scholar]
  117. Jiang Y. Chen Y. Yu Q. Shi Y. Biologic and small-molecule therapies for moderate-to-severe psoriasis: Focus on psoriasis comorbidities. BioDrugs 2023 37 1 35 55 10.1007/s40259‑022‑00569‑z 36592323
    [Google Scholar]
  118. Megna M. Potestio L. Fabbrocini G. Camela E. Treating psoriasis in the elderly: Biologics and small molecules. Expert Opin. Biol. Ther. 2022 22 12 1503 1520 10.1080/14712598.2022.2089020 35695241
    [Google Scholar]
  119. Nogueira M. Puig L. Torres T. Jak inhibitors for treatment of psoriasis: Focus on selective tyk2 inhibitors. Drugs 2020 80 4 341 352 10.1007/s40265‑020‑01261‑8 32020553
    [Google Scholar]
  120. Dewangan D. Nakhate K.T. Verma V.S. Nagori K. Tripathi D.K. Synthesis, characterization, and screening for analgesic and anti‐inflammatory activities of schiff bases of 1,3,4‐oxadiazoles linked with quinazolin‐4‐one. J. Heterocycl. Chem. 2017 54 6 3187 3194 10.1002/jhet.2934
    [Google Scholar]
  121. Fukuyama T. Ehling S. Cook E. Bäumer W. Topically administered janus-kinase inhibitors tofacitinib and oclacitinib display impressive antipruritic and anti-inflammatory responses in a model of allergic dermatitis. J. Pharmacol. Exp. Ther. 2015 354 3 394 405 10.1124/jpet.115.223784 26159873
    [Google Scholar]
  122. Papp K.A. Krueger J.G. Feldman S.R. Tofacitinib, an oral janus kinase inhibitor, for the treatment of chronic plaque psoriasis: Long-term efficacy and safety results from 2 randomized phase-iii studies and 1 open-label long-term extension study. J. Am. Acad. Dermatol. 2016 74 5 841 850 10.1016/j.jaad.2016.01.013 26899199
    [Google Scholar]
  123. Ramanunny A.K. Wadhwa S. Singh S.K. Sharma D.S. Khursheed R. Awasthi A. Treatment strategies against psoriasis: Principle, perspectives and practices. Curr. Drug Deliv. 2020 17 1 52 73 10.2174/1567201816666191120120551 31752655
    [Google Scholar]
  124. Schwartz D.M. Kanno Y. Villarino A. Ward M. Gadina M. O’Shea J.J. Erratum: Jak inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug Discov. 2018 17 1 78 10.1038/nrd.2017.267 29282366
    [Google Scholar]
  125. Jin W. Huang W. Chen L. Topical application of jak1/jak2 inhibitor momelotinib exhibits significant anti-inflammatory responses in dncb-induced atopic dermatitis model mice. Int. J. Mol. Sci. 2018 19 12 3973 10.3390/ijms19123973 30544712
    [Google Scholar]
  126. Yadav K. Pawar J. Singh D. Singh M.R. Promising phytoactives candidates for efficacious treatment of psoriasis and other skin disorders. J. Ravishankar Univ. 2019 31 1 10 22 10.52228/JRUB.2018‑31‑1‑2
    [Google Scholar]
  127. Parashar A. Patel P. Kaurav M. Nanomaterials as diagnostic tools and drug carriers. Nanoparticles Nanocarriers-Based Pharmaceutical Formula 2022 126 156 10.2174/9789815049787122010007
    [Google Scholar]
  128. Yadav K. Singh D. Singh M.R. Chauhan N.S. Minz S. Pradhan M. Chapter 18 - Nanobiomaterials as novel modules in the delivery of artemisinin and its derivatives for effective management of malaria. In: Chauhan BDM, Ed. Chapter 18 Chauhan B.D.M. 2023 447 466 10.1016/B978‑0‑323‑91942‑5.00003‑3
    [Google Scholar]
  129. Funk P.J. Perche P.O. Singh R. Kelly K.A. Feldman S.R. Comparing available jak inhibitors for treating patients with psoriasis. Expert Rev. Clin. Immunol. 2022 18 3 281 294 10.1080/1744666X.2022.2039121 35129030
    [Google Scholar]
  130. Wang H. Syrovets T. Kess D. Targeting nf-kappa b with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis. J. Immunol. 2009 183 7 4755 4763 10.4049/jimmunol.0900521 19752240
    [Google Scholar]
  131. Gautam S. Marwaha D. Singh N. Self-assembled redox-sensitive polymeric nanostructures facilitate the intracellular delivery of paclitaxel for improved breast cancer therapy. Mol. Pharm. 2023 20 4 1914 1932 10.1021/acs.molpharmaceut.2c00673 36848489
    [Google Scholar]
  132. Kabir E.R. Moreino S.S. Sharif Siam M.K. The breakthrough of biosimilars: A twist in the narrative of biological therapy. Biomolecules 2019 9 9 410 10.3390/biom9090410 31450637
    [Google Scholar]
  133. Subedi S. Gong Y. Chen Y. Shi Y. Infliximab and biosimilar infliximab in psoriasis: Efficacy, loss of efficacy, and adverse events. Drug Des. Devel. Ther. 2019 13 2491 2502 10.2147/DDDT.S200147 31413544
    [Google Scholar]
  134. Loft N. Egeberg A. Rasmussen M.K. Outcomes following a mandatory nonmedical switch from adalimumab originator to adalimumab biosimilars in patients with psoriasis. JAMA Dermatol. 2021 157 6 676 683 10.1001/jamadermatol.2021.0221 33825804
    [Google Scholar]
  135. Mysler E. Azevedo V.F. Danese S. Biosimilar-to-biosimilar switching: What is the rationale and current experience? Drugs 2021 81 16 1859 1879 10.1007/s40265‑021‑01610‑1 34705255
    [Google Scholar]
  136. Kaida-Yip F. Deshpande K. Saran T. Vyas D. Biosimilars: Review of current applications, obstacles, and their future in medicine. World J. Clin. Cases 2018 6 8 161 166 10.12998/wjcc.v6.i8.161 30148143
    [Google Scholar]
  137. Coghlan J. He H. Schwendeman A.S. Overview of humira® biosimilars: Current european landscape and future implications. J. Pharm. Sci. 2021 110 4 1572 1582 10.1016/j.xphs.2021.02.003 33556387
    [Google Scholar]
  138. Kvien T.K. Patel K. Strand V. The cost savings of biosimilars can help increase patient access and lift the financial burden of health care systems. Semin. Arthritis Rheum. 2022 52 151939 10.1016/j.semarthrit.2021.11.009 35027243
    [Google Scholar]
  139. Lucas S. Ailani J. Smith T.R. Abdrabboh A. Xue F. Navetta M.S. Pharmacovigilance: Reporting requirements throughout a product’s lifecycle. Ther. Adv. Drug Saf. 2022 13 20420986221125006 10.1177/20420986221125006 36187302
    [Google Scholar]
  140. Cohen H.P. Blauvelt A. Rifkin R.M. Danese S. Gokhale S.B. Woollett G. Switching reference medicines to biosimilars: A systematic literature review of clinical outcomes. Drugs 2018 78 4 463 478 10.1007/s40265‑018‑0881‑y 29500555
    [Google Scholar]
  141. Barsell A. Rengifo-Pardo M. Ehrlich A. A survey assessment of us dermatologists’ perception of biosimilars. J. Drugs Dermatol. 2017 16 6 612 615 28686780
    [Google Scholar]
  142. Mulcahy A.W. Hlavka J.P. Case S.R. Biosimilar cost savings in the united states: Initial experience and future potential. Rand Health Q. 2018 7 4 3 30083415
    [Google Scholar]
  143. Thomas S. Sharma N. Gonzalez R. Repositioning of verrucosidin, a purported inhibitor of chaperone protein grp78, as an inhibitor of mitochondrial electron transport chain complex i. PLoS One 2013 8 6 e65695 10.1371/journal.pone.0065695 23755268
    [Google Scholar]
  144. Cao Y. Lu W. Sun R. Anti-cd19 chimeric antigen receptor t cells in combination with nivolumab are safe and effective against relapsed/refractory b-cell non-hodgkin lymphoma. Front. Oncol. 2019 9 767 10.3389/fonc.2019.00767 31482064
    [Google Scholar]
  145. Puccetti M. Pariano M. Schoubben A. Giovagnoli S. Ricci M. Biologics, theranostics, and personalized medicine in drug delivery systems. Pharmacol. Res. 2024 201 107086 10.1016/j.phrs.2024.107086 38295917
    [Google Scholar]
  146. Ramanunny A.K. Wadhwa S. Thakur D. Singh S.K. Kumar R. Treatment modalities of psoriasis: A focus on requisite for topical nanocarrier. Endocr. Metab. Immune Disord. Drug Targets 2021 21 3 418 433 10.2174/1871530320666200604162258 32496998
    [Google Scholar]
  147. Thatiparthi A. Martin A. Liu J. Egeberg A. Wu J.J. Biologic treatment algorithms for moderate-to-severe psoriasis with comorbid conditions and special populations: A review. Am. J. Clin. Dermatol. 2021 22 4 425 442 10.1007/s40257‑021‑00603‑w 33861409
    [Google Scholar]
  148. Goetz L.H. Schork N.J. Personalized medicine: Motivation, challenges, and progress. Fertil. Steril. 2018 109 6 952 963 10.1016/j.fertnstert.2018.05.006 29935653
    [Google Scholar]
  149. Bissonnette R. Gottlieb A.B. Langley R.G. Signal detection and methodological limitations in a real-world registry: Learnings from the evaluation of long-term safety analyses in psolar. Drug Saf. 2021 44 6 699 709 10.1007/s40264‑021‑01065‑z 34075572
    [Google Scholar]
  150. Krzysztofik M. Brzewski P. Cuber P. Risk of melanoma and non-melanoma skin cancer in patients with psoriasis and psoriatic arthritis treated with targeted therapies: A systematic review and meta-analysis. Pharmaceuticals (Basel) 2023 17 1 14 10.3390/ph17010014 38276003
    [Google Scholar]
  151. Wu S. Xu Y. Yang L. Guo L. Jiang X. Short-term risk and long-term incidence rate of infection and malignancy with il-17 and il-23 inhibitors in adult patients with psoriasis and psoriatic arthritis: A systematic review and meta-analysis. Front. Immunol. 2023 14 1294416 10.3389/fimmu.2023.1294416 38106423
    [Google Scholar]
  152. Bergmans B. Jessurun N. van Lint J. Murk J.L. van Puijenbroek E. de Vries E. Burden of non-serious infections during biological use for rheumatoid arthritis. PLoS One 2024 19 2 e0296821 10.1371/journal.pone.0296821 38377117
    [Google Scholar]
  153. Evangelatos G. Bamias G. Kitas G.D. Kollias G. Sfikakis P.P. The second decade of anti-tnf-a therapy in clinical practice: New lessons and future directions in the covid-19 era. Rheumatol. Int. 2022 42 9 1493 1511 10.1007/s00296‑022‑05136‑x 35503130
    [Google Scholar]
  154. Tsiogka A. Gregoriou S. Stratigos A. The impact of treatment with il-17/il-23 inhibitors on subclinical atherosclerosis in patients with plaque psoriasis and/or psoriatic arthritis: A systematic review. Biomedicines 2023 11 2 318 10.3390/biomedicines11020318 36830855
    [Google Scholar]
  155. Al-Janabi A. Yiu Z.Z.N. Biologics in psoriasis: Updated perspectives on long-term safety and risk management. Psoriasis (Auckl.) 2022 12 1 14 10.2147/PTT.S328575 35024352
    [Google Scholar]
  156. Raut A.S. Prabhu R.H. Patravale V.B. Psoriasis clinical implications and treatment: A review. Crit. Rev. Ther. Drug Carrier Syst. 2013 30 3 183 216 10.1615/CritRevTherDrugCarrierSyst.2013005268 23614646
    [Google Scholar]
  157. Sbidian E. Chaimani A. Garcia-Doval I. Systemic pharmacological treatments for chronic plaque psoriasis: A network meta-analysis. Cochrane Libr. 2021 2021 12 CD011535 10.1002/14651858.CD011535.pub4 33871055
    [Google Scholar]
  158. Martins A.M. Ascenso A. Ribeiro H.M. Marto J. Current and future therapies for psoriasis with a focus on serotonergic drugs. Mol. Neurobiol. 2020 57 5 2391 2419 10.1007/s12035‑020‑01889‑3 32062841
    [Google Scholar]
  159. Nagori K. Nakhate K.T. Yadav K. Ajazuddin M. Pradhan M. Unlocking the therapeutic potential of medicinal plants for alzheimer’s disease: Preclinical to clinical trial insights. Future Pharmacol. 2023 3 4 877 907 10.3390/futurepharmacol3040053
    [Google Scholar]
  160. Korman N.J. Management of psoriasis as a systemic disease: What is the evidence? Br. J. Dermatol. 2020 182 4 840 848 10.1111/bjd.18245 31225638
    [Google Scholar]
  161. Poddighe D. Romano M. Gattinara M. Gerloni V. Biologics for the treatment of juvenile idiopathic arthritis. Curr. Med. Chem. 2019 25 42 5860 5893 10.2174/0929867325666180522085716 29788871
    [Google Scholar]
  162. Dewangan D. Nakhate K.T. Verma V.S. Synthesis and molecular docking study of novel hybrids of 1,3,4‐oxadiazoles and quinoxaline as a potential analgesic and anti‐inflammatory agents. J. Heterocycl. Chem. 2018 55 12 2901 2910 10.1002/jhet.3363
    [Google Scholar]
  163. Zaripova L.N. Midgley A. Christmas S.E. Beresford M.W. Baildam E.M. Oldershaw R.A. Juvenile idiopathic arthritis: From aetiopathogenesis to therapeutic approaches. Pediatr. Rheumatol. Online J. 2021 19 1 135 10.1186/s12969‑021‑00629‑8 34425842
    [Google Scholar]
  164. Singh D. Pradhan M. Nag M. Singh M.R. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artif. Cells Nanomed. Biotechnol. 2015 43 4 282 290 10.3109/21691401.2014.883401 24564350
    [Google Scholar]
  165. Tan J.K. Aphale A. Malaviya R. Sun Y. Gottlieb A.B. Mechanisms of action of etanercept in psoriasis. J. Investig. Dermatol. Symp. Proc. 2007 12 1 38 45 10.1038/sj.jidsymp.5650037 17502868
    [Google Scholar]
  166. Smith S.H. Peredo C.E. Takeda Y. Development of a topical treatment for psoriasis targeting rorγ: From bench to skin. PLoS One 2016 11 2 e0147979 10.1371/journal.pone.0147979 26870941
    [Google Scholar]
  167. Kircik L. Bhatia N. Lain E. Jacobson A. Breaking the frustrating cycle of topical steroids in psoriasis: A review of a novel vehicle for fixed-dose combination halobetasol propionate/tazarotene. J. Drugs Dermatol. 2023 22 3 247 251 10.36849/JDD.7399 36877884
    [Google Scholar]
  168. Iznardo H. Puig L. Dual inhibition of il-17a and il-17f in psoriatic disease. Ther. Adv. Chronic Dis. 2021 12 20406223211037846 10.1177/20406223211037846 34408825
    [Google Scholar]
  169. Deng G. Zhang Y. Song J. The role and therapeutic strategies for tissue‐resident memory t cells, central memory t cells, and effector memory t cells in psoriasis. Immunology 2024 173 3 470 480 10.1111/imm.13843 39136109
    [Google Scholar]
  170. Romão J. Melo A. André R. Novais F. Machine learning as a tool to find new pharmacological targets in mood disorders: A systematic review. Curr. Treat. Options Psychiatry 2024 11 3 241 264 10.1007/s40501‑024‑00326‑9
    [Google Scholar]
  171. Xing Y. Zhong S. Aronson S.L. Deep learning-based psoriasis assessment: Harnessing clinical trial imaging for accurate psoriasis area severity index prediction. Digit. Biomark. 2024 8 1 13 21 10.1159/000536499 38440046
    [Google Scholar]
  172. Huang K. Wu X. Li Y. Artificial intelligence–based psoriasis severity assessment: Real-world study and application. J. Med. Internet Res. 2023 25 e44932 10.2196/44932 36927843
    [Google Scholar]
  173. Brownstone N. Hong J. Mosca M. Biologic treatments of psoriasis: An update for the clinician. Biologics 2021 15 39 51 10.2147/BTT.S252578 33623366
    [Google Scholar]
  174. Felix P.A.O. Sampaio A.L. Silva B.L. Viana A.L.P. Early intervention in psoriasis: Where do we go from here? Front. Med. (Lausanne) 2022 9 1027347 10.3389/fmed.2022.1027347 36530901
    [Google Scholar]
  175. Kasoju N. Remya N.S. Sasi R. Digital health: Trends, opportunities and challenges in medical devices, pharma and bio-technology. CSI Transactions on ICT 2023 11 1 11 30 10.1007/s40012‑023‑00380‑3
    [Google Scholar]
/content/journals/raiad/10.2174/0127722708331606250128063129
Loading
/content/journals/raiad/10.2174/0127722708331606250128063129
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Psoriasis ; therapeutic target ; small molecule ; biosimilar ; clinical trial ; biologics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test