Skip to content
2000
image of The Role of Glucosinolates Beyond Plant Defense: Harnessing their Therapeutic Potential from Gut Health to Cancer Prevention

Abstract

Glucosinolates are plant-derived secondary metabolites with significant antimicrobial, anticancer, and gut microbiota-modulating properties. Their hydrolysis products, such as isothiocyanates, contribute to planting defense mechanisms and exhibit potential therapeutic applications. This study aimed to explore the metabolism, biosynthesis, antimicrobial activity, and therapeutic potential of glucosinolates, emphasizing their role in human health.

This literature review focuses on the analysis of existing studies on glucosinolate biosynthesis, metabolism, and biological activity. Research data have been gathered from scientific databases, focusing on and studies that have examined the antimicrobial, anticancer, and gut microbiota-modulating effects of glucosinolates and their derivatives.

Findings suggest that glucosinolates play a crucial role in human health by exerting antimicrobial properties against various bacterial strains, modulating gut microbiota composition, and reducing cancer risk through their bioactive breakdown products. Their biosynthetic pathway involves key enzymatic reactions, and variations in these processes affect their biological efficacy. However, bacterial resistance to isothiocyanates poses a challenge that requires further investigation.

Glucosinolates and their hydrolysis products offer promising therapeutic applications, particularly in disease prevention and gut health modulation. Future research should focus on optimizing their bioavailability and understanding resistance mechanisms to enhance their efficacy in clinical applications.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X403563250910193929
2025-09-22
2025-12-15
Loading full text...

Full text loading...

References

  1. Coley P.D. Barone J.A. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 1996 27 1 305 335 10.1146/annurev.ecolsys.27.1.305
    [Google Scholar]
  2. Winde I. Wittstock U. Insect herbivore counteradaptations to the plant glucosinolate–myrosinase system. Phytochemistry 2011 72 13 1566 1575 10.1016/j.phytochem.2011.01.016 21316065
    [Google Scholar]
  3. Mipeshwaree Devi A. Khedashwori Devi K. Premi Devi P. Lakshmipriyari Devi M. Das S. Metabolic engineering of plant secondary metabolites: Prospects and its technological challenges. Front Plant Sci 2023 14 1171154 10.3389/fpls.2023.1171154 37251773
    [Google Scholar]
  4. Selim K.A. Biology of endophytic fungi. Curr. Res. Environ. Appl. Mycol. 2012 2 1 31 82 10.5943/cream/2/1/3
    [Google Scholar]
  5. Bergamo A. Dyson P.J. Sava G. The mechanism of tumour cell death by metal-based anticancer drugs is not only a matter of DNA interactions. Coord. Chem. Rev. 2018 360 17 33 10.1016/j.ccr.2018.01.009
    [Google Scholar]
  6. Kumar A P.N. Kumar M. Major Phytochemicals: Recent advances in health benefits and extraction method. Molecules 2023 28 2 887 10.3390/molecules28020887 36677944
    [Google Scholar]
  7. Barbieri R. Coppo E. Marchese A. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017 196 44 68 10.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  8. Teoh E.S. Secondary metabolites of plants. In: Medicinal Orchids of Asia. Cham Springer 2016 59 73 10.1007/978‑3‑319‑24274‑3_5
    [Google Scholar]
  9. Zhu B. Liang Z. Zang Y. Zhu Z. Yang J. Diversity of glucosinolates among common Brassicaceae vegetables in China. Hortic. Plant J. 2023 9 3 365 380 10.1016/j.hpj.2022.08.006
    [Google Scholar]
  10. Fahey J.W. Zalcmann A.T. Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 2001 56 1 5 51 10.1016/S0031‑9422(00)00316‑2 11198818
    [Google Scholar]
  11. Chen S. Andreasson E. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 2001 39 9 743 758 10.1016/S0981‑9428(01)01301‑8
    [Google Scholar]
  12. Ağagündüz D. Şahin T.Ö. Yılmaz B. Ekenci K.D. Duyar Özer Ş. Capasso R. Cruciferous vegetables and their bioactive metabolites: From prevention to novel therapies of colorectal cancer. Evid. Based Complement. Alternat. Med. 2022 2022 1 20 10.1155/2022/1534083 35449807
    [Google Scholar]
  13. Nguyen V.P.T. Stewart J. Lopez M. Ioannou I. Allais F. Glucosinolates: Natural occurrence, biosynthesis, accessibility, isolation, structures, and biological activities. Molecules 2020 25 19 4537 10.3390/molecules25194537 33022970
    [Google Scholar]
  14. Graser G. Oldham N.J. Brown P.D. Temp U. Gershenzon J. The biosynthesis of benzoic acid glucosinolate esters in Arabidopsis thaliana. Phytochemistry 2001 57 1 23 32 10.1016/S0031‑9422(00)00501‑X 11336257
    [Google Scholar]
  15. Halkier B.A. Du L. The biosynthesis of glucosinolates. Trends Plant Sci. 1997 2 11 425 431 10.1016/S1360‑1385(97)90026‑1
    [Google Scholar]
  16. Halkier B.A. Gershenzon J. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 2006 57 1 303 333 10.1146/annurev.arplant.57.032905.105228 16669764
    [Google Scholar]
  17. Abdel-Massih R.M. Debs E. Othman L. Attieh J. Cabrerizo F.M. Glucosinolates, a natural chemical arsenal: More to tell than the myrosinase story. Front. Microbiol. 2023 14 1130208 10.3389/fmicb.2023.1130208 37089539
    [Google Scholar]
  18. Aires A. Mota V.R. Saavedra M.J. Initial in vitro evaluations of the antibacterial activities of glucosinolate enzymatic hydrolysis products against plant pathogenic bacteria. J. Appl. Microbiol. 2009 106 6 2096 2105 10.1111/j.1365‑2672.2009.04181.x 19291239
    [Google Scholar]
  19. Vaughn S.F. Berhow M.A. Glucosinolate hydrolysis products from various plant sources: PH effects, isolation, and purification. Ind. Crops Prod. 2005 21 2 193 202 10.1016/j.indcrop.2004.03.004
    [Google Scholar]
  20. Sikorska-Zimny K. Beneduce L. The metabolism of glucosinolates by gut microbiota. Nutrients 2021 13 8 2750 10.3390/nu13082750 34444909
    [Google Scholar]
  21. Chhajed S. Mostafa I. He Y. Abou-Hashem M. El-Domiaty M. Chen S. Glucosinolate biosynthesis and the Glucosinolate–Myrosinase system in plant defense. Agronomy 2020 10 11 1786 10.3390/agronomy10111786
    [Google Scholar]
  22. Evans D.J. Evans D.G. Escherichia Coli in Diarrheal Disease. Medical Microbiology 2015
    [Google Scholar]
  23. Hayes J.D. Kelleher M.O. Eggleston I.M. The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur. J. Nutr. 2008 47 Suppl. 2 73 88 10.1007/s00394‑008‑2009‑8 18458837
    [Google Scholar]
  24. Tian S. Liu X. Lei P. Zhang X. Shan Y. Microbiota: A mediator to transform glucosinolate precursors in cruciferous vegetables to the active isothiocyanates. J. Sci. Food Agric. 2018 98 4 1255 1260 10.1002/jsfa.8654 28869285
    [Google Scholar]
  25. Martins T. Ferreira T. Colaço B. Absorption and excretion of glucosinolates and isothiocyanates after ingestion of broccoli (Brassica oleracea L. var italica) leaf flour in mice: A preliminary study. Nutraceuticals 2023 3 4 540 555 10.3390/nutraceuticals3040039
    [Google Scholar]
  26. Habboush Y. Guzman N. Antibiotic resistance. Treasure Island, FL StatPearls 2023
    [Google Scholar]
  27. Dufour V. Stahl M. Baysse C. The antibacterial properties of isothiocyanates. Microbiology 2015 161 2 229 243 10.1099/mic.0.082362‑0 25378563
    [Google Scholar]
  28. Kumar A. Sabbioni G. New biomarkers for monitoring the levels of isothiocyanates in humans. Chem. Res. Toxicol. 2010 23 4 756 765 10.1021/tx900393t 20131755
    [Google Scholar]
  29. Freitas E. Aires A. Rosa E.A.S. Saavedra M.J. Antibacterial activity and synergistic effect between watercress extracts, 2-phenylethyl isothiocyanate and antibiotics against 11 isolates of Escherichia coli from clinical and animal source. Lett. Appl. Microbiol. 2013 57 4 266 273 10.1111/lam.12105 23682789
    [Google Scholar]
  30. Nakamura T. Abe-Kanoh N. Nakamura Y. Physiological relevance of covalent protein modification by dietary isothiocyanates. J. Clin. Biochem. Nutr. 2018 62 1 11 19 10.3164/jcbn.17‑91 29371751
    [Google Scholar]
  31. Hoch C.C. Shoykhet M. Weiser T. Isothiocyanates in medicine: A comprehensive review on phenylethyl-, allyl-, and benzyl-isothiocyanates. Pharmacol. Res. 2024 201 107107 10.1016/j.phrs.2024.107107 38354869
    [Google Scholar]
  32. Kolm R.H. Danielson U.H. Zhang Y. Talalay P. Mannervik B. Isothiocyanates as substrates for human glutathione transferases: Structure-activity studies. Biochem. J. 1995 311 2 453 459 10.1042/bj3110453 7487881
    [Google Scholar]
  33. Newton G.L. Buchmeier N. Fahey R.C. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol. Mol. Biol. Rev. 2008 72 3 471 494 10.1128/MMBR.00008‑08 18772286
    [Google Scholar]
  34. Ko¨hler T. Michéa-Hamzehpour M. Henze U. Gotoh N. Kocjancic Curty L. Pechère J.C. Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 1997 23 2 345 354 10.1046/j.1365‑2958.1997.2281594.x 9044268
    [Google Scholar]
  35. Fetar H. Gilmour C. Klinoski R. Daigle D.M. Dean C.R. Poole K. mexEF-oprN multidrug efflux operon of Pseudomonas aeruginosa: Regulation by the MexT activator in response to nitrosative stress and chloramphenicol. Antimicrob. Agents Chemother. 2011 55 2 508 514 10.1128/AAC.00830‑10 21078928
    [Google Scholar]
  36. Fan J. Crooks C. Creissen G. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 2011 331 6021 1185 1188 10.1126/science.1199707 21385714
    [Google Scholar]
  37. Martin C. Zhang Y. Tonelli C. Petroni K. Plants, diet, and health. Annu. Rev. Plant Biol. 2013 64 1 19 46 10.1146/annurev‑arplant‑050312‑120142 23451785
    [Google Scholar]
  38. Clavel T. Henderson G. Engst W. Doré J. Blaut M. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol. Ecol. 2006 55 3 471 478 10.1111/j.1574‑6941.2005.00057.x 16466386
    [Google Scholar]
  39. Zhao J. Zhang X. Li F. The effects of interventions with glucosinolates and their metabolites in cruciferous vegetables on inflammatory bowel disease: A review. Foods 2024 13 21 3507 10.3390/foods13213507 39517291
    [Google Scholar]
  40. Bouranis J.A. Beaver L.M. Ho E. Metabolic fate of dietary glucosinolates and their metabolites: A role for the microbiome. Front. Nutr. 2021 8 748433 3 10.3389/fnut.2021.748433 34631775
    [Google Scholar]
  41. Herr I. Büchler M.W. Dietary constituents of broccoli and other cruciferous vegetables: Implications for prevention and therapy of cancer. Cancer Treat. Rev. 2010 36 5 377 383 10.1016/j.ctrv.2010.01.002 20172656
    [Google Scholar]
  42. Thun M.J. DeLancey J.O. Center M.M. Jemal A. Ward E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010 31 1 100 110 10.1093/carcin/bgp263 19934210
    [Google Scholar]
  43. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  44. Bray F. Laversanne M. Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  45. Ferlay J. Ervik M. Lam F. Global cancer observatory: Cancer Today. 2024. 2024 Available from:https://gco.iarc.who.int/today
  46. Soundararajan P. Kim J.S. Anti-carcinogenic glucosinolates in cruciferous vegetables and their antagonistic effects on prevention of cancers. Molecules 2018 23 11 2983 10.3390/molecules23112983 30445746
    [Google Scholar]
  47. Zhang Y. Huang H. Jin L. Lin S. Anticarcinogenic effects of isothiocyanates on hepatocellular carcinoma. Int. J. Mol. Sci. 2022 23 22 13834 10.3390/ijms232213834 36430307
    [Google Scholar]
  48. Kwak M.K. Wakabayashi N. Kensler T.W. Chemoprevention through the Keap1–Nrf2 signaling pathway by phase 2 enzyme inducers. Mutat. Res. 2004 555 1-2 133 148 10.1016/j.mrfmmm.2004.06.041 15476857
    [Google Scholar]
  49. Jenkins T. Gouge J. Nrf2 in cancer, detoxifying enzymes and cell death programs. Antioxidants 2021 10 7 1030 10.3390/antiox10071030 34202320
    [Google Scholar]
  50. Lee S. Kim C. Lee H. Yun J. Nho C. Induction of the phase II detoxification enzyme NQO1 in hepatocarcinoma cells by lignans from the fruit of Schisandra chinensis through nuclear accumulation of Nrf2. Planta Med. 2009 75 12 1314 1318 10.1055/s‑0029‑1185685 19452436
    [Google Scholar]
  51. Iyanagi T. Molecular mechanism of phase I and phase II drug-metabolizing enzymes: Implications for detoxification. Int. Rev. Cytol. 2007 260 35 112 10.1016/S0074‑7696(06)60002‑8 17482904
    [Google Scholar]
  52. Go R-E. Hwang K-A. Choi K-C. Cytochrome P450 1 family and cancers. J. Steroid Biochem. Mol. Biol. 2015 147 24 30 10.1016/j.jsbmb.2014.11.003 25448748
    [Google Scholar]
  53. Gonzalez F.J. Role of cytochromes P450 in chemical toxicity and oxidative stress: Studies with CYP2E1. Mutat. Res. 2005 569 1-2 101 110 10.1016/j.mrfmmm.2004.04.021 15603755
    [Google Scholar]
  54. Razis A F A. Bagatta M. De Nicola G.R. Iori R. Ioannides C. Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin. Lung Cancer 2011 71 3 298 305 10.1016/j.lungcan.2010.06.015 20638746
    [Google Scholar]
  55. Abdull Razis A.F. Bagatta M. De Nicola G.R. Iori R. Ioannides C. Intact glucosinolates modulate hepatic cytochrome P450 and phase II conjugation activities and may contribute directly to the chemopreventive activity of cruciferous vegetables. Toxicology 2010 277 1-3 74 85 10.1016/j.tox.2010.08.080 20833222
    [Google Scholar]
  56. Oda Y. Metabolic activation of heterocyclic amines and other procarcinogens in Salmonella typhimurium umu tester strains expressing human cytochrome P4501A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4 and human NADPH-P450 reductase and bacterial O-acetyltransferase. Mutat. Res. 2001 492 1-2 81 90 10.1016/s1383‑5718(01)00154‑1 11377247
    [Google Scholar]
  57. Wu X. Cao J. Wan X. Du S. Programmed cell death in hepatocellular carcinoma: Mechanisms and therapeutic prospects. Cell Death Discov. 2024 10 1 356 10.1038/s41420‑024‑02116‑x 39117626
    [Google Scholar]
  58. Mitsiogianni M. Koutsidis G. Mavroudis N. The role of isothiocyanates as cancer chemo-preventive, chemo-therapeutic, and anti-melanoma agents. Antioxidants 2019 8 4 106 10.3390/antiox8040106 31003534
    [Google Scholar]
  59. Abd-Rabou A.A. Ahmed H.H. Kishta M.S. Implication of extrinsic and intrinsic apoptotic pathways in the targeted therapy of hepatocellular carcinoma using aptamer-labeled viramidine nanoparticles. BMC Cancer 2022 22 1 1106 10.1186/s12885‑022‑10201‑6 36309655
    [Google Scholar]
  60. Zhang Y. Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol. Sin. 2007 28 9 1343 1354 10.1111/j.1745‑7254.2007.00679.x 17723168
    [Google Scholar]
  61. Lai K.C. Lu C.C. Tang Y.J. Allyl isothiocyanate inhibits cell metastasis through suppression of the MAPK pathways in epidermal growth factor-stimulated HT29 human colorectal adenocarcinoma cells. Oncol. Rep. 2014 31 1 189 196 10.3892/or.2013.2865 24270601
    [Google Scholar]
  62. Chiang J-H. Lu C-C. Yang J-S. Allyl isothiocyanate induces apoptotic mechanism via endoplasmic reticulum stress and mitochondrial pathway in human colorectal cancer HT29 cells. Proceedings of the 8th World Congress on Toxicology and Pharmacology 2017
    [Google Scholar]
  63. Lin Chen KT Lu CC Allyl isothiocyanate triggers G2/M phase arrest and apoptosis in human brain malignant glioma GBM 8401 cells through a mitochondria-dependent pathway Oncol Rep 2010 24 2 449 55 10.3892/or_00000878 20596632
    [Google Scholar]
  64. Lucarini E. Micheli L. Di Cesare Mannelli L. Ghelardini C. Naturally occurring glucosinolates and isothiocyanates as a weapon against chronic pain: Potentials and limits. Phytochem. Rev. 2022 21 2 647 665 10.1007/s11101‑022‑09809‑0
    [Google Scholar]
  65. Goldberg D.S. McGee S.J. Pain as a global public health priority. BMC Public Health 2011 11 1 770 10.1186/1471‑2458‑11‑770 21978149
    [Google Scholar]
  66. Ji R.R. Chamessian A. Zhang Y.Q. Pain regulation by non-neuronal cells and inflammation. Science 2016 354 6312 572 577 10.1126/science.aaf8924 27811267
    [Google Scholar]
  67. Angeloni C. Hrelia S. Malaguti M. Neuroprotective effects of glucosinolates. In: Glucosinolates Reference Series in Phytochemistry. Cham Springer 2017 275 299 10.1007/978‑3‑319‑25462‑3_20
    [Google Scholar]
  68. Mizuno K. Kume T. Muto C. Glutathione biosynthesis via activation of the nuclear factor E2-related factor 2 (Nrf2)--antioxidant-response element (ARE) pathway is essential for neuroprotective effects of sulforaphane and 6-(methylsulfinyl) hexyl isothiocyanate. J. Pharmacol. Sci. 2011 115 3 320 328 10.1254/jphs.10257FP 21358121
    [Google Scholar]
  69. Eugui D. Escobar C. Velasco P. Poveda J. Glucosinolates as an effective tool in plant-parasitic nematodes control: Exploiting natural plant defenses. Appl. Soil Ecol. 2022 176 104497 10.1016/j.apsoil.2022.104497
    [Google Scholar]
  70. Davis E. Hussey R.S. Baum T.J. Getting to the roots of parasitism by nematodes. Trends Parasitol. 2004 20 3 134 141 10.1016/j.pt.2004.01.005 15036035
    [Google Scholar]
  71. Jones J.T. Haegeman A. Danchin E.G.J. Top 10 plant‐parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013 14 9 946 961 10.1111/mpp.12057 23809086
    [Google Scholar]
  72. Zasada I.A. Halbrendt J.M. Kokalis-Burelle N. LaMondia J. McKenry M.V. Noling J.W. Managing nematodes without methyl bromide. Annu. Rev. Phytopathol. 2010 48 1 311 328 10.1146/annurev‑phyto‑073009‑114425 20455696
    [Google Scholar]
  73. Chin S. Behm C.A. Mathesius U. Functions of flavonoids in Plant–Nematode interactions. Plants 2018 7 4 85 10.3390/plants7040085 30326617
    [Google Scholar]
  74. D’Addabbo T. Carbonara T. Leonetti P. Radicci V. Tava A. Avato P. Control of plant parasitic nematodes with active saponins and biomass from Medicago sativa. Phytochem. Rev. 2011 10 4 503 519 10.1007/s11101‑010‑9180‑2
    [Google Scholar]
  75. Maistrello L. Vaccari G. Sasanelli N. Effect of chestnut tannins on the root-knot nematode Meloidogyne javanica. Helminthologia 2010 47 1 48 57 10.2478/s11687‑010‑0008‑9
    [Google Scholar]
  76. Monfort W.S. Csinos A.S. Desaeger J. Seebold K. Webster T.M. Diaz-Perez J.C. Evaluating Brassica species as an alternative control measure for root-knot nematode (M. incognita) in Georgia vegetable plasticulture. Crop Prot. 2007 26 9 1359 1368 10.1016/j.cropro.2006.11.008
    [Google Scholar]
  77. Dutta T.K. Khan M.R. Phani V. Plant-parasitic nematode management via biofumigation using brassica and non-brassica plants: Current status and future prospects. Curr. Plant Biol. 2019 17 17 32 10.1016/j.cpb.2019.02.001
    [Google Scholar]
  78. Fatemy S. Sepideh A. Adverse effects of brassica green manures on encysted eggs, infective second-stage juveniles and the reproduction of Globodera rostochiensis. J. Plant Dis. Prot. 2016 123 5 225 233 10.1007/s41348‑016‑0031‑2
    [Google Scholar]
  79. Silva J.C.P. Campos V.P. Barros A.F. Plant volatiles reduce the viability of the root-knot nematode Meloidogyne incognita either directly or when retained in water. Plant Dis. 2018 102 11 2170 2179 10.1094/PDIS‑01‑18‑0143‑RE 30207900
    [Google Scholar]
  80. Agerbirk N. Olsen C.E. Glucosinolate structures in evolution. Phytochemistry 2012 77 16 45 10.1016/j.phytochem.2012.02.005 22405332
    [Google Scholar]
  81. He L. Jiang H. Li Y. Sulforaphane-enriched extracts from broccoli exhibit antimicrobial activity against plant pathogens, promising a natural antimicrobial agent for crop protection. Biomolecules 2024 14 3 352 10.3390/biom14030352 38540770
    [Google Scholar]
  82. Fahey J.W. Haristoy X. Dolan P.M. Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[ a]pyrene-induced stomach tumors. Proc. Natl. Acad. Sci. USA 2002 99 11 7610 7615 10.1073/pnas.112203099 12032331
    [Google Scholar]
  83. Manici L.M. Lazzeri L. Baruzzi G. Leoni O. Galletti S. Palmieri S. Suppressive activity of some glucosinolate enzyme degradation products onPythium irregulare andRhizoctonia solani in sterile soil. Pest Manag. Sci. 2000 56 10 921 926 10.1002/1526‑4998(200010)56:10<921:AID‑PS232>3.0.CO;2‑L
    [Google Scholar]
  84. Bednarek P. Piślewska-Bednarek M. Svatoš A. A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 2009 323 5910 101 106 10.1126/science.1163732 19095900
    [Google Scholar]
  85. Smolinska U. Morra M.J. Knudsen G.R. Brown P.D. Toxicity of glucosinolate degradation products from Brassica napus seed meal toward Aphanomyces euteiches f. sp. pisi. Phytopathology 1997 87 1 77 82 10.1094/PHYTO.1997.87.1.77 18945157
    [Google Scholar]
  86. Yasumoto S. Matsuzaki M. Hirokane H. Okada K. Glucosinolate content in rapeseed in relation to suppression of subsequent crop. Plant Prod. Sci. 2010 13 2 150 155 10.1626/pps.13.150
    [Google Scholar]
  87. Lewis J.A. Effect of sulfur-containing volatile compounds and vapors from cabbage decomposition on Aphanomyces euteiches. Phytopathology 1971 61 2 208 10.1094/Phyto‑61‑208
    [Google Scholar]
  88. Randall J. Popova I. Kinetics of Brassicaceae glucosinolates sinigrin, sinalbin, and glucolimnanthin hydrolysis by myrosinase isoenzymes for biopesticide development. J Nat Pestic Res 2023 6 100059 10.1016/j.napere.2023.100059
    [Google Scholar]
  89. Ciska E. Drabińska N. Honke J. Narwojsz A. Boiled Brussels sprouts: A rich source of glucosinolates and the corresponding nitriles. J. Funct. Foods 2015 19 91 99 10.1016/j.jff.2015.09.008
    [Google Scholar]
  90. Galanty A. Grudzińska M. Paździora W. Służały P. Paśko P. Do Brassica vegetables affect thyroid function? A comprehensive systematic review. Int. J. Mol. Sci. 2024 25 7 3988 10.3390/ijms25073988 38612798
    [Google Scholar]
  91. Variyar P. Banerjee A. Akkarakaran J.J. Suprasanna P. Role of glucosinolates in plant stress tolerance. In: Emerging Technologies and Management of Crop Stress Tolerance. Cambridge, Massachusetts: Academic Press 2014 1 271 91 10.1016/B978‑0‑12‑800876‑8.00012‑6
    [Google Scholar]
  92. Miao H Zeng W Wang J Zhang F Sun B Wang Q Improvement of glucosinolates by metabolic engineering in Brassica crops aBIOTECH 2021 2 3 314 29 10.1007/s42994‑021‑00057‑y 36303883
    [Google Scholar]
  93. Jones R.B. Faragher J.D. Winkler S. A review of the influence of postharvest treatments on quality and glucosinolate content in broccoli (Brassica oleracea var. italica) heads. Postharvest Biol. Technol. 2006 41 1 1 8 10.1016/j.postharvbio.2006.03.003
    [Google Scholar]
  94. Cheng B. Ran R. Qu Y. Advancements in balancing glucosinolate production in plants to deliver effective defense and promote human health. Agric. Commun. 2024 2 2 100040 10.1016/j.agrcom.2024.100040
    [Google Scholar]
  95. Li X. Wen D. He Y. Progresses and prospects on glucosinolate detection in cruciferous plants. Foods 2024 13 24 4141 10.3390/foods13244141 39767081
    [Google Scholar]
  96. Ibrahim R.M.M. Eltanany B. Pont L. Benavente F. ElBanna S.A. Otify A.M. Unveiling the functional components and antivirulence activity of mustard leaves using an LC-MS/MS, molecular networking, and multivariate data analysis integrated approach. Food Res. Int. 2023 168 112742 10.1016/j.foodres.2023.112742 37120197
    [Google Scholar]
  97. Wu W. Chen J. Yu D. Chen S. Ye X. Zhang Z. Analysis of processing effects on glucosinolate profiles in red cabbage by LC-MS/MS in multiple reaction monitoring mode. Molecules 2021 26 17 5171 10.3390/molecules26175171 34500612
    [Google Scholar]
  98. Bell L. Oruna-Concha M.J. Wagstaff C. Identification and quantification of glucosinolate and flavonol compounds in rocket salad (Eruca sativa, Eruca vesicaria and Diplotaxis tenuifolia) by LC–MS: Highlighting the potential for improving nutritional value of rocket crops. Food Chem. 2015 172 852 861 10.1016/j.foodchem.2014.09.116 25442630
    [Google Scholar]
  99. Sahu P.K. Ramisetti N.R. Cecchi T. Swain S. Patro C.S. Panda J. An overview of experimental designs in HPLC method development and validation. J. Pharm. Biomed. Anal. 2018 147 590 611 10.1016/j.jpba.2017.05.006 28579052
    [Google Scholar]
  100. Abdul Ghani M.A. Nordin A.N. Zulhairee M. Portable electrochemical biosensors based on microcontrollers for detection of viruses: A review. Biosensors 2022 12 8 666 10.3390/bios12080666 36005062
    [Google Scholar]
  101. Meza S. Zhou Y. Chastain J. Eco-Efficient quantification of glucosinolates in camelina seed, oil, and defatted meal: Optimization, development, and validation of a UPLC-DAD method. Antioxidants 2022 11 12 2441 10.3390/antiox11122441 36552649
    [Google Scholar]
  102. Wu X. Pehrsson P.R. Current knowledge and challenges on the development of a dietary glucosinolate database in the United States. Curr. Dev. Nutr. 2021 5 8 nzab102 10.1093/cdn/nzab102 34458665
    [Google Scholar]
  103. He F. Thiele B. Santhiraraja-Abresch S. Effects of root temperature on the plant growth and food quality of Chinese broccoli (Brassica oleracea var. alboglabra Bailey). Agronomy 2020 10 5 702 10.3390/agronomy10050702
    [Google Scholar]
  104. Frazie M. Kim M. Ku K.M. Health-promoting phytochemicals from 11 mustard cultivars at baby leaf and mature stages. Molecules 2017 22 10 1749 10.3390/molecules22101749 29039792
    [Google Scholar]
  105. Clarke J.D. Dashwood R.H. Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 269 2 291 304 10.1016/j.canlet.2008.04.018 18504070
    [Google Scholar]
  106. Hayes J.D. McMahon M. Chowdhry S. Dinkova-Kostova A.T. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox Signal. 2010 13 11 1713 1748 10.1089/ars.2010.3221 20446772
    [Google Scholar]
  107. Mojtahedi H. Managing Meloidogyne chitwoodi on potato with rapeseed as green manure. Plant Dis. 1993 77 1 42 10.1094/PD‑77‑0042
    [Google Scholar]
  108. Higdon J. Delage B. Williams D. Dashwood R. Cruciferous vegetables and human cancer risk: Epidemiologic evidence and mechanistic basis. Pharmacol. Res. 2007 55 3 224 236 10.1016/j.phrs.2007.01.009 17317210
    [Google Scholar]
  109. Felker P. Bunch R. Leung A.M. Concentrations of thiocyanate and goitrin in human plasma, their precursor concentrations in brassica vegetables, and associated potential risk for hypothyroidism. Nutr. Rev. 2016 74 4 248 258 10.1093/nutrit/nuv110 26946249
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X403563250910193929
Loading
/content/journals/rafna/10.2174/012772574X403563250910193929
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: gut microbiome ; hepatocellular carcinoma ; isothiocyanates ; Glucosinolates
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test