Skip to content
2000
image of Modelling Metabolic Disorders with Stem Cell-Derived Gut and Liver Organoids: Insights into Probiotic Therapies

Abstract

Metabolic disorders, such as non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and obesity, are increasingly linked to disruptions in the gut-liver axis and microbiome. Probiotics have gained attention for modulating metabolic health, but their translation from preclinical to clinical use remains limited. Stem cell-derived liver and gut organoids provide advanced platforms for studying host-microbe interactions and evaluating probiotic therapies in a physiologically relevant context. This review systematically synthesized studies published between 2014 and 2025, obtained from PubMed, Scopus, and Web of Science, focusing on the generation, biological relevance, and translational applications of liver and gut organoids in probiotic therapy research. Key inclusion criteria were studies demonstrating organoid-based modelling of metabolic diseases, microbiome interactions, and high-throughput screening approaches. Gut and liver organoids successfully replicated key tissue functions and host-microbiota dynamics. Probiotics, such as and , have been shown to improve gut barrier function, reduce hepatic lipid accumulation, and modulate inflammatory signalling. Integration with high-throughput screening and microbiome co-culture platforms will enhance their predictive value.

Organoid-based models bridge the gap between traditional systems and human clinical relevance, providing detailed insights into the action of probiotics on metabolic pathways. However, challenges remain in terms of reproducibility, vascular and immune integration, and clinical translatability. Stem cell-derived gut and liver organoids represent promising tools for advancing probiotic-based therapies in metabolic diseases. Their continued refinement could have a significant impact on personalized medicine and accelerate therapeutic development.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X399047251006043349
2025-11-11
2026-01-02
Loading full text...

Full text loading...

References

  1. Targher G. Corey K.E. Byrne C.D. Roden M. The complex link between NAFLD and type 2 diabetes mellitus — mechanisms and treatments. Nat. Rev. Gastroenterol. Hepatol. 2021 18 9 599 612 10.1038/s41575‑021‑00448‑y 33972770
    [Google Scholar]
  2. Cariou B. Byrne C.D. Loomba R. Sanyal A.J. Nonalcoholic fatty liver disease as a metabolic disease in humans: A literature review. Diabetes Obes. Metab. 2021 23 5 1069 1083 10.1111/dom.14322 33464677
    [Google Scholar]
  3. Chandrasekaran P. Weiskirchen R. The role of obesity in type 2 diabetes mellitus—An overview. Int. J. Mol. Sci. 2024 25 3 1882 10.3390/ijms25031882 38339160
    [Google Scholar]
  4. Zarghamravanbakhsh P. Frenkel M. Poretsky L. Metabolic causes and consequences of nonalcoholic fatty liver disease (NAFLD). Metab. Open 2021 12 100149 10.1016/j.metop.2021.100149 34870138
    [Google Scholar]
  5. Vetrano E. Rinaldi L. Mormone A. Non-alcoholic fatty liver disease (NAFLD), type 2 diabetes, and non-viral hepatocarcinoma: Pathophysiological mechanisms and new therapeutic strategies. Biomedicines 2023 11 2 468 10.3390/biomedicines11020468 36831004
    [Google Scholar]
  6. Marušić M. Paić M. Knobloch M. Liberati Pršo A.M. NAFLD, insulin resistance, and diabetes mellitus type 2. Can. J. Gastroenterol. Hepatol. 2021 2021 1 6613827 33681089
    [Google Scholar]
  7. Tilg H. Adolph T.E. Trauner M. Gut-liver axis: Pathophysiological concepts and clinical implications. Cell Metab. 2022 34 11 1700 1718 10.1016/j.cmet.2022.09.017 36208625
    [Google Scholar]
  8. Martín-Mateos R. Albillos A. The role of the gut-liver axis in metabolic dysfunction-associated fatty liver disease. Front. Immunol. 2021 12 660179 10.3389/fimmu.2021.660179 33936094
    [Google Scholar]
  9. Gibbons S.M. Gurry T. Lampe J.W. Perspective: Leveraging the gut microbiota to predict personalized responses to dietary, prebiotic, and probiotic interventions. Adv. Nutr. 2022 13 5 1450 1461 10.1093/advances/nmac075 35776947
    [Google Scholar]
  10. Białecka-Dębek A. Granda D. Szmidt M.K. Zielińska D. Gut microbiota, probiotic interventions, and cognitive function in the elderly: A review of current knowledge. Nutrients 2021 13 8 2514 10.3390/nu13082514 34444674
    [Google Scholar]
  11. Azar J. Bahmad H.F. Daher D. The use of stem cell-derived organoids in disease modeling: An update. Int. J. Mol. Sci. 2021 22 14 7667 10.3390/ijms22147667 34299287
    [Google Scholar]
  12. Geurts M.H. Gandhi S. Boretto M.G. One-step generation of tumor models by base editor multiplexing in adult stem cell-derived organoids. Nat. Commun. 2023 14 1 4998 10.1038/s41467‑023‑40701‑3 37591832
    [Google Scholar]
  13. Nuciforo S. Heim M.H. Organoids to model liver disease. JHEP Reports 2021 3 1 100198 10.1016/j.jhepr.2020.100198 33241206
    [Google Scholar]
  14. Harrison S.P. Baumgarten S.F. Verma R. Lunov O. Dejneka A. Sullivan G.J. Liver organoids: Recent developments, limitations and potential. Front. Med. 2021 8 574047 10.3389/fmed.2021.574047 34026769
    [Google Scholar]
  15. Zhu X. Zhang B. He Y. Bao J. Liver organoids: Formation strategies and biomedical applications. Tissue Eng. Regen. Med. 2021 18 4 573 585 10.1007/s13770‑021‑00357‑w 34132985
    [Google Scholar]
  16. Liu S. Cheng C. Zhu L. Liver organoids: Updates on generation strategies and biomedical applications. Stem Cell Res. Ther. 2024 15 1 244 10.1186/s13287‑024‑03865‑3 39113154
    [Google Scholar]
  17. Zheng L. Zhan Y. Wang C. Technological advances and challenges in constructing complex gut organoid systems. Front. Cell Dev. Biol. 2024 12 1432744 10.3389/fcell.2024.1432744 39206092
    [Google Scholar]
  18. Miao Y. Tan C. Pek N.M. Yu Z. Iwasawa K. Kechele D.O. Deciphering endothelial and mesenchymal organ specification in vascularized lung and intestinal organoids. bioRxiv [Preprint] 2024
    [Google Scholar]
  19. Deng Y. Yuan X. Lu X. The use of gut organoids: To study the physiology and disease of the gut microbiota. J. Cell. Mol. Med. 2025 29 4 e70330 10.1111/jcmm.70330 39968926
    [Google Scholar]
  20. Park G. Rim Y.A. Sohn Y. Nam Y. Ju J.H. Replacing animal testing with stem cell-organoids: Advantages and limitations. Stem Cell Rev. Rep. 2024 20 6 1375 1386 10.1007/s12015‑024‑10723‑5 38639829
    [Google Scholar]
  21. Gabriel V. Zdyrski C. Sahoo D.K. Adult animal stem cell-derived organoids in biomedical research and the one health paradigm. Int. J. Mol. Sci. 2024 25 2 701 10.3390/ijms25020701 38255775
    [Google Scholar]
  22. Wang H. Zhu W. Xu C. Su W. Li Z. Engineering organoids-on-chips for drug testing and evaluation. Metabolism 2025 162 156065 10.1016/j.metabol.2024.156065 39522593
    [Google Scholar]
  23. Mulaudzi P.E. Abrahamse H. Crous A. Insights on three dimensional organoid studies for stem cell therapy in regenerative medicine. Stem Cell Rev. Rep. 2024 20 2 509 523 10.1007/s12015‑023‑10655‑6 38095787
    [Google Scholar]
  24. Zhang T. Qian C. Song M. Application prospect of induced pluripotent stem cells in organoids and cell therapy. Int. J. Mol. Sci. 2024 25 5 2680 10.3390/ijms25052680 38473926
    [Google Scholar]
  25. Tadokoro T. Murata S. Kato M. Human iPSC–liver organoid transplantation reduces fibrosis through immunomodulation. Sci. Transl. Med. 2024 16 757 eadg0338 10.1126/scitranslmed.adg0338 39047116
    [Google Scholar]
  26. Artegiani B. Hendriks D. Organoids from pluripotent stem cells and human tissues: When two cultures meet each other. Dev. Cell 2025 60 4 493 511 10.1016/j.devcel.2025.01.005 39999776
    [Google Scholar]
  27. Zdyrski C. Gabriel V. Gessler T.B. Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations. Commun. Biol. 2024 7 1 218 10.1038/s42003‑024‑05818‑1 38388772
    [Google Scholar]
  28. Soto-Gamez A. Gunawan J.P. Barazzuol L. Pringle S. Coppes R.P. Organoid-based personalized medicine: From tumor outcome prediction to autologous transplantation. Stem Cells 2024 42 6 499 508 10.1093/stmcls/sxae023 38525972
    [Google Scholar]
  29. Huang L. Bernink J.H. Giladi A. Tuft cells act as regenerative stem cells in the human intestine. Nature 2024 634 8035 929 935 10.1038/s41586‑024‑07952‑6 39358509
    [Google Scholar]
  30. Lee S. Choi J.H. Park S.Y. Kim J. Gastric organoid, a promising modeling for gastric stem cell homeostasis and therapeutic application. Int. J. Stem Cells 2024 17 4 337 346 10.15283/ijsc23075 38698632
    [Google Scholar]
  31. Poletti M. Arnauts K. Ferrante M. Korcsmaros T. Organoid-based models to study the role of host-microbiota interactions in IBD. J. Crohn’s Colitis 2021 15 7 1222 1235 10.1093/ecco‑jcc/jjaa257 33341879
    [Google Scholar]
  32. Wu J. Zhang B. Liu X. Current gut-on-a-chip platforms for clarifying the interactions between diet, gut microbiota, and host health. Trends Food Sci. Technol. 2023 134 1 12 10.1016/j.tifs.2023.02.013
    [Google Scholar]
  33. Puschhof J. Pleguezuelos-Manzano C. Martinez-Silgado A. Intestinal organoid cocultures with microbes. Nat. Protoc. 2021 16 10 4633 4649 10.1038/s41596‑021‑00589‑z 34381208
    [Google Scholar]
  34. Han X. Mslati M.A. Davies E. Chen Y. Allaire J.M. Vallance B.A. Creating a more perfect union: Modeling intestinal bacteria-epithelial interactions using organoids. Cell. Mol. Gastroenterol. Hepatol. 2021 12 2 769 782 10.1016/j.jcmgh.2021.04.010 33895425
    [Google Scholar]
  35. Anand S. Mande S.S. Host-microbiome interactions: Gut-liver axis and its connection with other organs. NPJ Biofilms Microbiomes 2022 8 1 89 10.1038/s41522‑022‑00352‑6 36319663
    [Google Scholar]
  36. Lee J.Y. Tsolis R.M. Bäumler A.J. The microbiome and gut homeostasis. Science 2022 377 6601 eabp9960 10.1126/science.abp9960 35771903
    [Google Scholar]
  37. Su X. Gao Y. Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells 2022 11 15 2296 10.3390/cells11152296 35892593
    [Google Scholar]
  38. Bellucci E. Chiereghin F. Pacifici F. Novel therapeutic approaches based on the pathological role of gut dysbiosis on the link between nonalcoholic fatty liver disease and insulin resistance. Eur. Rev. Med. Pharmacol. Sci. 2023 27 5 1921 1944 36930488
    [Google Scholar]
  39. Sen P. Fan Y. Schlezinger J.J. Exposure to environmental toxicants is associated with gut microbiome dysbiosis, insulin resistance and obesity. Environ. Int. 2024 186 108569 10.1016/j.envint.2024.108569 38522229
    [Google Scholar]
  40. Chen H. Sun Y. Zhao H. α-Lactalbumin peptide Asp-Gln-Trp alleviates hepatic insulin resistance and modulates gut microbiota dysbiosis in high-fat diet-induced NAFLD mice. Food Funct. 2022 13 19 9878 9892 10.1039/D2FO01343F 36052713
    [Google Scholar]
  41. Wu Y. Wang B. Tang L. Probiotic Bacillus alleviates oxidative stress-induced liver injury by modulating gut-liver axis in a rat model. Antioxidants 2022 11 2 291 10.3390/antiox11020291 35204173
    [Google Scholar]
  42. Mandato C. Delli Bovi A.P. Vajro P. The gut-liver axis as a target of liver disease management. Hepatobiliary Surg. Nutr. 2021 10 1 100 102 10.21037/hbsn.2020.03.27 33575294
    [Google Scholar]
  43. Yu C. Xu Y. Wei Y. Gut microbiota and liver metabolomics reveal the potential mechanism of Lactobacillus rhamnosus GG modulating the liver toxicity caused by polystyrene microplastics in mice. Environ. Sci. Pollut. Res. Int. 2023 31 4 6527 6542 10.1007/s11356‑023‑31564‑8 38151562
    [Google Scholar]
  44. Cheng H.L. Yen G.C. Huang S.C. Chen S.C. Hsu C.L. The next generation beneficial actions of novel probiotics as potential therapeutic targets and prediction tool for metabolic diseases. Yao Wu Shi Pin Fen Xi 2022 30 1 1 10 10.38212/2224‑6614.3396 35647717
    [Google Scholar]
  45. Al-Fakhrany O.M. Elekhnawy E. Next-generation probiotics: The upcoming biotherapeutics. Mol. Biol. Rep. 2024 51 1 505 10.1007/s11033‑024‑09398‑5 38619680
    [Google Scholar]
  46. Asaduzzaman M. Sultan M.S. Next-generation probiotics-the future of biotherapeutics. Microb. Bioact. 2022 5 1 156 163
    [Google Scholar]
  47. Beyaz Coşkun A. Sağdiçoğlu Celep A.G. Therapeutic modulation methods of gut microbiota and gut-liver axis. Crit. Rev. Food Sci. Nutr. 2022 62 23 6505 6515 10.1080/10408398.2021.1902263 33749411
    [Google Scholar]
  48. Wang Q. Wang Z. Pang B. Probiotics for the improvement of metabolic profiles in patients with metabolic-associated fatty liver disease: A systematic review and meta-analysis of randomized controlled trials. Front. Endocrinol. 2022 13 1014670 10.3389/fendo.2022.1014670 36407321
    [Google Scholar]
  49. Al-Najjar Y. Arabi M. Paul P. Chaari A. Can probiotic, prebiotic, and synbiotic supplementation modulate the gut-liver axis in type 2 diabetes? A narrative and systematic review of clinical trials. Front. Nutr. 2022 9 1052619 10.3389/fnut.2022.1052619 36532552
    [Google Scholar]
  50. Wu J. Chen X. Qian J. Li G. Clinical improvement effect of regulating gut microbiota on metabolic dysfunction-associated steatotic liver disease: Systematic review and meta-analysis of randomized controlled trials. Clin. Res. Hepatol. Gastroenterol. 2024 48 7 102397 10.1016/j.clinre.2024.102397 38879003
    [Google Scholar]
  51. Tan H. Chen X. Wang C. Intestinal organoid technology and applications in probiotics. Crit. Rev. Food Sci. Nutr. 2025 65 6 1055 1069 10.1080/10408398.2023.2288887 38032232
    [Google Scholar]
  52. Xiang T. Wang J. Li H. Current applications of intestinal organoids: A review. Stem Cell Res. Ther. 2024 15 1 155 10.1186/s13287‑024‑03768‑3 38816841
    [Google Scholar]
  53. Yin Y. Xu L. Steinway S.N. Editorial: 3D organoid and organ-on-a-chip and their applications for virology and antiviral research. Front. Microbiol. 2023 14 1266136 10.3389/fmicb.2023.1266136 37614596
    [Google Scholar]
  54. Gabriel V. Zdyrski C. Sahoo D.K. Standardization and maintenance of 3D canine hepatic and intestinal organoid cultures for use in biomedical research. J. Vis. Exp. 2022 179 179 e63515 35156656
    [Google Scholar]
  55. Naissinger da Silva M. Tagliapietra B.L. Flores V.A. Pereira dos Santos Richards N.S. In vitro test to evaluate survival in the gastrointestinal tract of commercial probiotics. Current Research in Food Science 2021 4 320 325 10.1016/j.crfs.2021.04.006 34095855
    [Google Scholar]
  56. Casertano M. Fryganas C. Valentino V. Gut production of GABA by a probiotic formula: An in vitro study. Benef. Microbes 2024 15 1 67 81 10.1163/18762891‑20230025 38350463
    [Google Scholar]
  57. Hathi Z. Mettu S. Priya A. Methodological advances and challenges in probiotic bacteria production: Ongoing strategies and future perspectives. Biochem. Eng. J. 2021 176 108199 10.1016/j.bej.2021.108199
    [Google Scholar]
  58. Tremblay A. Auger J. Alyousif Z. Total transit time and probiotic persistence in healthy adults: A pilot study. J. Neurogastroenterol. Motil. 2023 29 2 218 228 10.5056/jnm22031 37019866
    [Google Scholar]
  59. Bornholdt J. Müller C.V. Nielsen M.J. Detecting host responses to microbial stimulation using primary epithelial organoids. Gut Microbes 2023 15 2 2281012 10.1080/19490976.2023.2281012 37992398
    [Google Scholar]
  60. Donkers J.M. Wiese M. van den Broek T.J. A host-microbial metabolite interaction gut-on-a-chip model of the adult human intestine demonstrates beneficial effects upon inulin treatment of gut microbiome. Microb Res Rep 2024 3 2 18 10.20517/mrr.2023.79 38841408
    [Google Scholar]
  61. Song S.H. Jeong S. State-of-the-art in high throughput organ-on-chip for biotechnology and pharmaceuticals. Clin. Exp. Reprod. Med. 2025 52 2 114 124 10.5653/cerm.2024.06954 39301759
    [Google Scholar]
  62. Dortaj H. Azarpira N. Pakbaz S. Insight to biofabrication of liver microtissues for disease modeling: Challenges and opportunities. Curr. Stem Cell Res. Ther. 2024 19 10 1303 1311 10.2174/011574888X257744231009071810 37846577
    [Google Scholar]
  63. Kim R. Sung J.H. Recent advances in gut‐ and gut–organ‐axis‐on‐a‐chip models. Adv. Healthc. Mater. 2024 13 21 2302777 10.1002/adhm.202302777 38243887
    [Google Scholar]
  64. Naik A. Misra S.K. Modern sensing approaches for predicting toxicological responses of food-and drug-based bioactives on microbiomes of gut origin. J. Agric. Food Chem. 2021 69 23 6396 6413 10.1021/acs.jafc.1c02736 34081444
    [Google Scholar]
  65. Günther C. Winner B. Neurath M.F. Stappenbeck T.S. Organoids in gastrointestinal diseases: From experimental models to clinical translation. Gut 2022 71 9 1892 1908 10.1136/gutjnl‑2021‑326560 35636923
    [Google Scholar]
  66. Wheeler A.E. Stoeger V. Owens R.M. Lab-on-chip technologies for exploring the gut–immune axis in metabolic disease. Lab Chip 2024 24 5 1266 1292 10.1039/D3LC00877K 38226866
    [Google Scholar]
  67. Anjum M. Laitila A. Ouwehand A.C. Forssten S.D. Current perspectives on gastrointestinal models to assess probiotic-pathogen interactions. Front. Microbiol. 2022 13 831455 10.3389/fmicb.2022.831455 35173703
    [Google Scholar]
  68. Yilmaz E.G. Hacıosmanoğlu N. Jordi S.B.U. Yilmaz B. Inci F. Revolutionizing IBD research with on-chip models of disease modeling and drug screening. Trends Biotechnol. 2024 39523166
    [Google Scholar]
  69. De Martinis E.C.P. Alves V.F. Pereira M.G. Applying 3D cultures and high-throughput technologies to study host-pathogen interactions. Front. Immunol. 2025 16 1488699 10.3389/fimmu.2025.1488699 40051624
    [Google Scholar]
  70. Lucchetti M. Kaminska M. Oluwasegun A.K. Mosig A.S. Wilmes P. Emulating the gut–liver axis: Dissecting the microbiome’s effect on drug metabolism using multiorgan-on-chip models. Curr. Opin. Endocr. Metab. Res. 2021 18 94 101 10.1016/j.coemr.2021.03.003 34239997
    [Google Scholar]
  71. Chatterjee G. Negi S. Basu S. Faintuch J. O’Donovan A. Shukla P. Microbiome systems biology advancements for natural well-being. Sci. Total Environ. 2022 838 Pt 2 155915 10.1016/j.scitotenv.2022.155915 35568180
    [Google Scholar]
  72. Wolfe W Xiang Z Yu X The challenge of applications of probiotics in gastrointestinal diseases. 2023 2023 1 1 10 10.1155/2023/1984200
    [Google Scholar]
  73. Parente I.A. Chiara L. Bertoni S. Exploring the potential of human intestinal organoids: Applications, challenges, and future directions. Life Sci. 2024 352 122875 10.1016/j.lfs.2024.122875 38942359
    [Google Scholar]
  74. Cassotta M. Cianciosi D. Elexpuru-Zabaleta M. Human‐based new approach methodologies to accelerate advances in nutrition research. Food Front. 2024 5 3 1031 1062 10.1002/fft2.369
    [Google Scholar]
  75. Hentschel V. Seufferlein T. Armacki M. Intestinal organoids in coculture: Redefining the boundaries of gut mucosa ex vivo modeling. Am. J. Physiol. Gastrointest. Liver Physiol. 2021 321 6 G693 G704 10.1152/ajpgi.00043.2021 34643092
    [Google Scholar]
  76. Kakni P. Jutten B. Teixeira Oliveira Carvalho D. Hypoxia-tolerant apical-out intestinal organoids to model host-microbiome interactions. J. Tissue Eng. 2023 14 20417314221149208 10.1177/20417314221149208 36699634
    [Google Scholar]
  77. Morelli M. Kurek D. Ng C.P. Queiroz K. Gut-on-a-Chip models: Current and future perspectives for host–microbial interactions research. Biomedicines 2023 11 2 619 10.3390/biomedicines11020619 36831155
    [Google Scholar]
  78. Fusco F. Perottoni S. Giordano C. The microbiota‐gut‐brain axis and epilepsy from a multidisciplinary perspective: Clinical evidence and technological solutions for improvement of in vitro preclinical models. Bioeng. Transl. Med. 2022 7 2 e10296 10.1002/btm2.10296 35600638
    [Google Scholar]
  79. Žukauskaitė K. Li M. Horvath A. Jarmalaitė S. Stadlbauer V. Cellular and microbial in vitro modelling of gastrointestinal cancer. Cancers 2024 16 17 3113 10.3390/cancers16173113 39272971
    [Google Scholar]
  80. Alam K. Nair L. Mukherjee S. Cellular interplay to 3D in vitro microphysiological disease model: Cell patterning microbiota–gut–brain axis. Biodes. Manuf. 2024 7 3 320 357 10.1007/s42242‑024‑00282‑6
    [Google Scholar]
  81. Geurts M.H. Clevers H. CRISPR engineering in organoids for gene repair and disease modelling. Nature Reviews Bioengineering 2023 1 1 32 45 10.1038/s44222‑022‑00013‑5
    [Google Scholar]
  82. Ramakrishna G. Babu P.E. Singh R. Trehanpati N. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids. Hepatol. Int. 2021 15 6 1309 1317 10.1007/s12072‑021‑10237‑z 34596864
    [Google Scholar]
  83. Bai L. Wu Y. Li G. Zhang W. Zhang H. Su J. AI-enabled organoids: Construction, analysis, and application. Bioact. Mater. 2024 31 525 548 10.1016/j.bioactmat.2023.09.005 37746662
    [Google Scholar]
  84. Maramraju S. Kowalczewski A. Kaza A. AI‐organoid integrated systems for biomedical studies and applications. Bioeng. Transl. Med. 2024 9 2 e10641 10.1002/btm2.10641 38435826
    [Google Scholar]
  85. Zhou Z. Cong L. Cong X. Patient-derived organoids in precision medicine: Drug screening, organoid-on-a-chip and living organoid biobank. Front. Oncol. 2021 11 762184 10.3389/fonc.2021.762184 35036354
    [Google Scholar]
  86. Yang H Wang Y Wang P Zhang N Wang P Tumor organoids for cancer research and personalized medicine. Cancer Biol Med 2021 18 - 0 10.20892/j.issn.2095‑3941.2021.0335 34520134
    [Google Scholar]
  87. Lensink M.A. Boers S.N. Jongsma K.R. Carter S.E. van der Ent C.K. Bredenoord A.L. Organoids for personalized treatment of Cystic Fibrosis: Professional perspectives on the ethics and governance of organoid biobanking. J. Cyst. Fibros. 2021 20 3 443 451 10.1016/j.jcf.2020.11.015 33303364
    [Google Scholar]
  88. Huang W. Xu Z. Li S. Zhou J. Zhao B. Living biobanks of organoids: Valuable resource for translational research. Biopreserv. Biobank. 2024 22 6 543 549 10.1089/bio.2023.0142 38959173
    [Google Scholar]
  89. Li H. Liu H. Chen K. Living biobank-based cancer organoids: Prospects and challenges in cancer research. Cancer Biol. Med. 2022 19 7 965 982 10.20892/j.issn.2095‑3941.2021.0621 35856555
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X399047251006043349
Loading
/content/journals/rafna/10.2174/012772574X399047251006043349
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test