Skip to content
2000
image of Artificial Intelligence-powered Detection Systems for Antibiotic Residues in Food and the Environment: A Mini Review with Special Focus on Milk Products and Environmental Matrices Analysis

Abstract

Antibiotic residues in food products and environmental matrices pose significant public health risks, including antimicrobial resistance and toxicological effects. Traditional detection methods face limitations regarding sensitivity, cost-effectiveness, and field applicability, necessitating advanced technological solutions. A systematic literature review was conducted, examining publications from 2020 to 2024 using PubMed and academic databases. Keywords included “Artificial Intelligence,” “Machine Learning,” “Antibiotic Residue Detection,” “Biosensors,” “Spectroscopy,” and “Food Safety.” Studies integrating AI/ML with biosensors, optical systems, and electrochemical platforms were analysed. AI-enhanced detection systems demonstrated superior performance metrics. Electrochemical sensors with gradient boosting algorithms achieved a 99% classification accuracy for antibiotic identification. Machine learning-powered optical immunosensors achieved detection limits of 0.03-0.4 ng/mL for the simultaneous quantification of multiple antibiotics. Convolutional Neural Networks resolved spectral overlaps with R2 values exceeding 0.984, while smartphone-based systems enabled portable detection with high precision and recall metrics. AI/ML integration significantly improves sensitivity, specificity, and multiplexing capabilities over conventional methods. These technologies enable real-time, on-site monitoring and address spectral interference challenges. However, standardisation protocols and cross-matrix validation remain critical gaps, requiring further research. AI/ML technologies represent a paradigm shift in antibiotic residue analysis, offering enhanced detection capabilities for food safety and environmental monitoring. Continued development of robust, standardised AI models is essential for regulatory adoption and widespread implementation in public health protection.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X388015250901211939
2025-09-29
2025-12-19
Loading full text...

Full text loading...

References

  1. Wilkinson J.L. Boxall A.B.A. Kolpin D.W. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022 119 8 e2113947119 10.1073/pnas.2113947119 35165193
    [Google Scholar]
  2. Murugesan D. Shome B.R. Venugopal N. Prevalence of antibioticresidues in milksamples of small-scaledairyhouseholds in Bengaluru, India. Indian J. Anim. Sci. 2023 93 11 1118 1122 10.56093/ijans.v93i11.126855
    [Google Scholar]
  3. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance 2017 Available from: https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance
  4. Imamoglu H. Oktem Olgun E. Analysis of veterinary drug and pesticide residues using the ethyl acetate multiclass/multiresidue method in milk by liquid chromatography-tandem mass spectrometry. J. Anal. Methods Chem. 2016 2016 1 17 10.1155/2016/2170165 27293962
    [Google Scholar]
  5. Font H. Adrian J. Galve R. Immunochemical assays for direct sulfonamide antibiotic detection in milk and hair samples using antibody derivatized magnetic nanoparticles. J. Agric. Food Chem. 2008 56 3 736 743 10.1021/jf072550n 18177003
    [Google Scholar]
  6. Shuai Y. Li N. Zhang Y. Aptamer-free upconversion nanoparticle/silk biosensor system for low-cost and highly sensitive detection of antibiotic residues. Biosens. Bioelectron. 2024 258 116335 116335 10.1016/j.bios.2024.116335 38710144
    [Google Scholar]
  7. Kirchhelle C. Pharming animals: A global history of antibiotics in food production (1935−2017). Palgrave Commun. 2018 4 1 1 13
    [Google Scholar]
  8. Mitchell J.M. Griffiths M.W. Mcewen S.A. Mcnab W.B. Yee A.J. Antimicrobial drug residues in milk and meat: Causes, concerns, prevalence, regulations, tests, and test performance. J. Food Prot. 1998 61 6 742 756 10.4315/0362‑028X‑61.6.742 9709262
    [Google Scholar]
  9. Cabello F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006 8 7 1137 1144 10.1111/j.1462‑2920.2006.01054.x 16817922
    [Google Scholar]
  10. Kümmerer K. Antibiotics in the aquatic environment – A review – Part I. Chemosphere 2009 75 4 417 434 10.1016/j.chemosphere.2008.11.086 19185900
    [Google Scholar]
  11. Liu S. Bekele T.G. Zhao H. Cai X. Chen J. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China. Sci. Total Environ. 2018 631-632 1398 1405 10.1016/j.scitotenv.2018.03.139 29727963
    [Google Scholar]
  12. Liu X. Steele J.C. Meng X.Z. Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environ. Pollut. 2017 223 161 169 10.1016/j.envpol.2017.01.003 28131482
    [Google Scholar]
  13. Hirsch R. Ternes T. Haberer K. Kratz K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999 225 1-2 109 118 10.1016/S0048‑9697(98)00337‑4 10028708
    [Google Scholar]
  14. Binh V.N. Dang N. Anh N.T.K. Ky L.X. Thai P.K. Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk and control strategy. Chemosphere 2018 197 438 450 10.1016/j.chemosphere.2018.01.061 29366957
    [Google Scholar]
  15. Larsson D.G.J. de Pedro C. Paxeus N. Effluent from drug manufactures contains extremely high levels of pharmaceuticals. J. Hazard. Mater. 2007 148 3 751 755 10.1016/j.jhazmat.2007.07.008 17706342
    [Google Scholar]
  16. Li D. Yang M. Hu J. Ren L. Zhang Y. Li K. Determination and fate of oxytetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ. Toxicol. Chem. 2008 27 1 80 86 10.1897/07‑080.1 18092864
    [Google Scholar]
  17. Fick J. Söderström H. Lindberg R.H. Phan C. Tysklind M. Larsson D.G.J. Contamination of surface, ground, and drinking water from pharmaceutical production. Environ. Toxicol. Chem. 2009 28 12 2522 2527 10.1897/09‑073.1 19449981
    [Google Scholar]
  18. Sim W.J. Lee J.W. Lee E.S. Shin S.K. Hwang S.R. Oh J.E. Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere 2011 82 2 179 186 10.1016/j.chemosphere.2010.10.026 21040946
    [Google Scholar]
  19. Babić S. Mutavdžić D. Ašperger D. Horvat A.J. Kaštelan-Macan M. Determination of veterinary pharmaceuticals in production wastewater by hptlc-videodensitometry. Chromatographia 2007 65 1 105 110 10.1365/s10337‑006‑0101‑8
    [Google Scholar]
  20. Lien L. Hoa N. Chuc N. Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—a one year study from Vietnam. Int. J. Environ. Res. Public Health 2016 13 6 588 10.3390/ijerph13060588 27314366
    [Google Scholar]
  21. Diwan V. Tamhankar A.J. Khandal R.K. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 2010 10 1 414 10.1186/1471‑2458‑10‑414 20626873
    [Google Scholar]
  22. Rodriguez-Mozaz S. Chamorro S. Marti E. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Res. 2015 69 234 242 10.1016/j.watres.2014.11.021 25482914
    [Google Scholar]
  23. Khan G.A. Berglund B. Khan K.M. Lindgren P.E. Fick J. Occurrence and abundance of antibiotics and resistance genes in rivers, canal and near drug formulation facilities--a study in Pakistan. PLoS One 2013 8 6 e62712 10.1371/journal.pone.0062712 23840297
    [Google Scholar]
  24. Thai P.K. Ky L.X. Binh V.N. Occurrence of antibiotic residues and antibiotic-resistant bacteria in effluents of pharmaceutical manufacturers and other sources around Hanoi, Vietnam. Sci. Total Environ. 2018 645 393 400 10.1016/j.scitotenv.2018.07.126 30029118
    [Google Scholar]
  25. Ajibola A.S. Amoniyan O.A. Ekoja F.O. Ajibola F.O. QuEChERS approach for the analysis of three fluoroquinolone antibiotics in wastewater: concentration profiles and ecological risk in two nigerian hospital wastewater treatment plants. Arch. Environ. Contam. Toxicol. 2021 80 2 389 401 10.1007/s00244‑020‑00789‑w 33247335
    [Google Scholar]
  26. Yao S. Ye J. Yang Q. Occurrence and removal of antibiotics, antibiotic resistance genes, and bacterial communities in hospital wastewater. Environ. Sci. Pollut. Res. Int. 2021 28 40 57321 57333 10.1007/s11356‑021‑14735‑3 34089156
    [Google Scholar]
  27. Al-Maadheed S. Goktepe I. Latiff A.B.A. Shomar B. Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar. J. Water Process Eng. 2019 28 60 68 10.1016/j.jwpe.2019.01.005
    [Google Scholar]
  28. Naber K.G. Theuretzbacher U. Kinzig M. Savov O. Sörgel F. Urinary excretion and bactericidal activities of a single oral dose of 400 milligrams of fleroxacin versus a single oral dose of 800 milligrams of pefloxacin in healthy volunteers. Antimicrob. Agents Chemother. 1998 42 7 1659 1665 10.1128/AAC.42.7.1659 9661000
    [Google Scholar]
  29. Wang H. Wang B. Zhao Q. Antibiotic body burden of Chinese school children: A multisite biomonitoring-based study. Environ. Sci. Technol. 2015 49 8 5070 5079 10.1021/es5059428 25830781
    [Google Scholar]
  30. Elijah Ngumba Anthony Gachanja James James Johanna Maldonado Tuula Tuhkanen Occurrence of antibiotics and antiretroviral drugs in source-separated urine, groundwater, surface water and wastewater in the peri-urban area of Chunga in Lusaka, Zambia Water SA 2020 46 2 April 278 84 10.17159/wsa/2020.v46.i2.8243
    [Google Scholar]
  31. Zhou X. Cuasquer G.J.P. Li Z. Mang H.P. Lv Y. Occurrence of typical antibiotics, representative antibiotic-resistant bacteria, and genes in fresh and stored source-separated human urine. Environ. Int. 2021 146 106280 106280 10.1016/j.envint.2020.106280 33395931
    [Google Scholar]
  32. Wood MJ Farrell W Comparison of urinary excretion of tobramycin and gentamicin in adults J Infect Dis 1976 134 S133 8.(Suppl. 1) 10.1093/infdis/134.Supplement_1.S133 972272
    [Google Scholar]
  33. Huang X. Chen C. Zeng Q. Ding D. Gu J. Mo J. Field study on loss of tetracycline antibiotics from manure-applied soil and their risk assessment in regional water environment of Guangzhou, China. Sci. Total Environ. 2022 827 154273 154273 10.1016/j.scitotenv.2022.154273 35257772
    [Google Scholar]
  34. Hamscher G. Pawelzick H.T. Höper H. Nau H. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environ. Toxicol. Chem. 2005 24 4 861 868 10.1897/04‑182R.1 15839560
    [Google Scholar]
  35. Anonymous Investigation of antibiotic residue levels in animal waste. Chem Res J 2022 7 3 80 87
    [Google Scholar]
  36. Al-Wabel M.I. Ahmad M. Rafique M.I. Akanji M.A. Usman A.R.A. Al-Farraj A.S.F. Sulfamethoxazole Leaching from Manure-Amended Sandy Loam Soil as Affected by the application of jujube wood waste-derived biochar. Molecules 2021 26 15 4674 10.3390/molecules26154674 34361826
    [Google Scholar]
  37. Residues of veterinary antibiotics in manures from pig and chicken farms in a context of antimicrobial use reduction by implementation of health and welfare plans. Environmental Research 2024 238
    [Google Scholar]
  38. Zhao L. Dong Y.H. Wang H. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 2010 408 5 1069 1075 10.1016/j.scitotenv.2009.11.014 19954821
    [Google Scholar]
  39. Lacroix M.Z. Ramon-Portugal F. Huesca A. Residues of veterinary antibiotics in manures from pig and chicken farms in a context of antimicrobial use reduction by implementation of health and welfare plans. Environ. Res. 2023 238 Pt 2 117242 10.1016/j.envres.2023.117242 37769831
    [Google Scholar]
  40. Rogowska J. Zimmermann A. Muszyńska A. Ratajczyk W. Wolska L. Pharmaceutical household waste practices: Preliminary findings from a case study in Poland. Environ. Manage. 2019 64 1 97 106 10.1007/s00267‑019‑01174‑7 31076828
    [Google Scholar]
  41. Rogowska J. Zimmermann A. Household pharmaceutical waste disposal as a Global Problem—A review. Int. J. Environ. Res. Public Health 2022 19 23 15798 10.3390/ijerph192315798 36497873
    [Google Scholar]
  42. Alice A. Sunil A. Nallasamy V. Ramanathan S. Assessment on disposal practices of unused and expired medications. International Journal of Public Health Science(IJPHS) 2022 11 3 935 10.11591/ijphs.v11i3.21256
    [Google Scholar]
  43. Kanny G. Puygrenier J. Beaudoin E. Moneret-Vautrin D.A. Alimentary anaphylactic shock: Implication of penicillin residues] Allerg. Immunol. (Paris) 1994 26 5 181 183 7522012
    [Google Scholar]
  44. Raison-Peyron N. Messaad D. Bousquet J. Demoly P. Anaphylaxis to beef in penicillin‐allergic patient. Allergy 2001 56 8 796 797 10.1034/j.1398‑9995.2001.056008796.x 11488686
    [Google Scholar]
  45. Cabello F.C. Antibióticos y acuicultura en Chile: Consecuencias para la salud humana y animal. Rev. Med. Chil. 2004 132 8 1001 1006 10.4067/S0034‑98872004000800014 15478304
    [Google Scholar]
  46. Ajslev T.A. Andersen C.S. Gamborg M. Sørensen T.I.A. Jess T. Childhood overweight after establishment of the gut microbiota: The role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. 2011 35 4 522 529 10.1038/ijo.2011.27 21386800
    [Google Scholar]
  47. Nisha A. Antibiotic residues - A global health hazard. Vet. World 2008 2 2 375 377 10.5455/vetworld.2008.375‑377
    [Google Scholar]
  48. Gutiérrez P. Godoy S.E. Torres S. Improved antibiotic detection in raw milk using machine learning tools over the absorption spectra of a problem-specific nanobiosensor. Sensors 2020 20 16 4552 10.3390/s20164552 32823811
    [Google Scholar]
  49. Aliev TA Belyaev VE Pomytkina AV The development of an electrochemical sensor for antibiotics in milk based on machine learning algorithms. arXiv 2022
  50. Aliev T.A. Belyaev V.E. Pomytkina A.V. Electrochemical sensor to detect antibiotics in milk based on machine learning algorithms. ACS Appl. Mater. Interfaces 2023 15 44 52010 52020 10.1021/acsami.3c12050 37874132
    [Google Scholar]
  51. Lu Z. Chen S. Chen M. Trichromatic ratiometric fluorescent sensor based on machine learning and smartphone for visual and portable monitoring of tetracycline antibiotics. Chem. Eng. J. 2023 454 140492 140492 10.1016/j.cej.2022.140492
    [Google Scholar]
  52. Zhou C. Huang C. Zhang H. Machine-learning-driven optical immunosensor based on microspheres-encoded signal transduction for the rapid and multiplexed detection of antibiotics in milk. Food Chem. 2024 437 Pt 1 137740 10.1016/j.foodchem.2023.137740 37871421
    [Google Scholar]
  53. Huang Y. Chen J. Duan Q. A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning. Front. Environ. Sci. Eng. 2022 16 3 38 10.1007/s11783‑021‑1472‑9
    [Google Scholar]
  54. Elbalkiny H.T. Yehia A.M. Artificial networks for spectral resolution of antibiotic residues in bovine milk; solidification of floating organic droplet in dispersive liquid-liquid microextraction for sample treatment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 266 120449 120449 10.1016/j.saa.2021.120449 34628363
    [Google Scholar]
  55. Fang G. Lin X. Liang X. Machine learning‐driven 3D plasmonic cavity‐in‐cavity surface‐enhanced raman scattering platform with triple synergistic enhancement toward label‐free detection of antibiotics in milk. Small 2022 18 45 2204588 10.1002/smll.202204588 36161767
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X388015250901211939
Loading
/content/journals/rafna/10.2174/012772574X388015250901211939
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test