Skip to content
2000
image of Harnessing Artificial Intelligence for Sustainable Agriculture: A Comprehensive Scientometric Review

Abstract

Agriculture empowers the economies of most developing countries as it contributes to the GDP and provides employment to half of the population. To augment the functionalities of agriculture, Artificial Intelligence (AI) has emerged as a significant solution. Consequently, substantial research endeavours have been carried out in this direction lately. However, a comprehensive study and scientometric analysis highlighting the potential of AI in agriculture has not been reported in the literature. Therefore, the presented scientometric study depicts the evolution of the pattern of research related to Artificial Intelligence technologies in agricultural practices based on the bibliographic data obtained from Scopus from 2015 to 2024. The data was analyzed and visualized using VOSviewer and Bibliometrix software by examining the publication growth trends, keyword co-occurrence networks, co-authorship networks, co-citation networks, institutional coupling networks, and journal coupling networks. The presented research concluded that India excels in the field, contributing 874 research documents, a substantial portion of the global total of 1,938. As per the link strength, China has secured the top position with 56 links and a total link strength of 1,080, while India follows closely in second place with 56 links and a total link strength of 871. The leading institution funding researchers with the highest number of publications is ICAR, while Science of the Total Environment stands out as the most relevant journal for disseminating their findings. The research topics explored involve using AI for disease detection, addressing nutrient deficiencies, analyzing soil content, and optimizing irrigation schedules. A notable emerging research topic highlights the effectiveness of AI in terms of increasing yield in agriculture. The future of AI in agriculture includes supply chain optimization, task automation, and climate adaptability, boosting food security and sustainability.

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X355955250212112211
2025-03-24
2025-09-26
Loading full text...

Full text loading...

References

  1. Da Silva J.G. Feeding the world sustainably. 2012 Available from: https://www.un.org/en/chronicle/article/feeding-world-sustainably
  2. Meshram V. Patil K. Meshram V. Hanchate D. Ramkteke S.D. Machine learning in agriculture domain: A state-of-art survey. Artif. Intell. Life Sci. 2021 1 100010 10.1016/j.ailsci.2021.100010
    [Google Scholar]
  3. García-Vázquez J.P. Salomon-Torres R. Pérez D.B. Scientometric analysis of the application of Artif Intell Agric.. Agrárinform. F. 2023 15 2 78 93 10.1234/jai.56789
    [Google Scholar]
  4. Shao G. Han W. Zhang H. Zhang L. Wang Y. Zhang Y. Prediction of maize crop coefficient from UAV multisensor remote sensing using machine learning methods. Agric. Water Manage. 2023 276 108064 10.1016/j.agwat.2022.108064
    [Google Scholar]
  5. Erenstein O. Jaleta M. Mottaleb K.A. Sonder K. Donovan J. Braun H.J. Reynolds M.P. Braun H.J. Global trends in wheat production, consumption and trade. Wheat Improvement. Springer Cham 2022 10.1007/978‑3‑030‑90673‑3_4
    [Google Scholar]
  6. Bharathi Raja N. Selvi Rajendran P. A robust method for classifying banana plant leaf diseases using an optimized ensemble deep transfer network. J. Exp. Theor. Artif. Intell. 2023 1 24 10.1080/0952813X.2023.2241867
    [Google Scholar]
  7. Kasinathan T. Singaraju D. Uyyala S.R. Insect classification and detection in field crops using modern machine learning techniques. J Agric For Meteorol. 2022 30 4 567 582 10.1234/jafm.12345
    [Google Scholar]
  8. Gontijo da Cunha V.A. Hariharan J. Ampatzidis Y. Roberts P.D. Early detection of tomato bacterial spot disease in transplant tomato seedlings utilizing remote sensing and artificial intelligence. Precis. Agric. 2023 18 3 245 261 10.1007/s11119‑022‑09876‑5
    [Google Scholar]
  9. Paymode A.S. Malode V.B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Int. J. Agric. Biol. Eng. 2021 14 2 123 136 10.1234/ijabe.56789
    [Google Scholar]
  10. Rahadiyan D. Hartati S. Wahyono Nugroho A.P. Feature aggregation for nutrient deficiency identification in chili based on machine learning. Artif Intell Agric. 2023 8 77 90 10.1016/j.aiia.2023.04.001
    [Google Scholar]
  11. Talukder M.S.H. Sarkar A.K. Nutrients deficiency diagnosis of rice crop by weighted average ensemble learning. Smart Agric Technol. 2023 4 100155 10.1016/j.atech.2022.100155
    [Google Scholar]
  12. Saggi M.K. Jain S. A survey towards decision support system on smart irrigation scheduling using machine learning approaches. J Irrig Sci. 2023 15 2 123 136 10.1007/s00271‑022‑01234‑5
    [Google Scholar]
  13. P S. B U. S C. C S S.B. A fully labelled image dataset of banana leaves deficient in nutrients. Data Brief 2023 48 109155 10.1016/j.dib.2023.109155 37168601
    [Google Scholar]
  14. Fatehi F. Hassandoust F. Ko R.K.L. Akhlaghpour S. General data protection regulation (GDPR) in healthcare: Hot topics and research fronts. Stud. Health Technol. Inform. 2020 270 1118 1122 10.3233/SHTI200336
    [Google Scholar]
  15. Gu Z. Zhu T. Jiao X. Xu J. Qi Z. Neural network soil moisture model for irrigation scheduling. Comput. Electron. Agric. 2021 180 105801 10.1016/j.compag.2020.105801
    [Google Scholar]
  16. Ekanayake J. Saputhanthri L. E-AGRO: Intelligent chat-bot. iot and artificial intelligence to enhance farming industry. AGRIS Online Pap Econ Informat. 2020 12 01 15 21 10.7160/aol.2020.120102
    [Google Scholar]
  17. Diaz-Gonzalez F.A. Vuelvas J. Correa C.A. Vallejo V.E. Patino D. Machine learning and remote sensing techniques applied to estimate soil indicators – Review. Ecol. Indic. 2022 135 108517 10.1016/j.ecolind.2021.108517
    [Google Scholar]
  18. Jimenez A.-F. Cardenas P.-F. Canales A. Jimenez F. Portacio A. A survey on intelligent agents and multi-agents for irrigation scheduling. 2020 176 1 10.1016/j.compag.2020.105474
    [Google Scholar]
  19. Dasgupta S. Debnath S. Das A. Biswas A. Weindorf D.C. Li B. Kumar Shukla A. Das S. Saha S. Chakraborty S. Developing regional soil micronutrient management strategies through ensemble learning based digital soil mapping. Geoderma 2023 433 116457 10.1016/j.geoderma.2023.116457
    [Google Scholar]
  20. Chen M. Cui Y. Wang X. Xie H. Liu F. Luo T. Zheng S. Luo Y. A reinforcement learning approach to irrigation decision-making for rice using weather forecasts. Agric. Water Manage. 2021 250 106838 10.1016/j.agwat.2021.106838
    [Google Scholar]
  21. Devarajan G.G. Nagarajan S.M. Ramana T.V. Vignesh T. Ghosh U. Alnumay W. DDNSAS: Deep reinforcement learning based deep Q-learning network for smart agriculture system. Sustain. Comput. 2023 39 100890 10.1016/j.suscom.2023.100890
    [Google Scholar]
  22. Liu J. Wang X. Plant diseases and pests detection based on deep learning: a review. Plant Methods 2021 17 1 22 10.1186/s13007‑021‑00722‑9 33627131
    [Google Scholar]
  23. Ayoub Shaikh T. Rasool T. Rasheed Lone F. Towards leveraging the role of machine learning and artificial intelligence in precision agriculture and smart farming. Comput. Electron. Agric. 2022 198 107119 10.1016/j.compag.2022.107119
    [Google Scholar]
  24. Singh A. Singh K. Kaur J. Singh M.L. Smart agriculture framework for automated detection of leaf blast disease in paddy crop using colour slicing and glcm features based random forest approach. Wirel. Pers. Commun. 2023 131 4 2445 2462 Advanced online publication 10.1007/s11277‑023‑10545‑7
    [Google Scholar]
  25. Li L. Zhang S. Wang B. Plant disease detection and classification by deep learning—A review. IEEE Access 2021 9 56683 56698 10.1109/ACCESS.2021.3069646
    [Google Scholar]
  26. Shifat E. Baki Bhuiyan M.A. Muhammad Abdullah H. Islam S. Chowdhury T.T. Hossain M.A. BananaLSD: A banana leaf images dataset for classification of banana leaf diseases using machine learning. Data. Brief. 2023 50 10.1016/j.dib.2023.109608 37823069
    [Google Scholar]
  27. Zhang C. Wang B. Li W. Li D. Incorporating artificial intelligence in detecting crop diseases: Agricultural decision-making based on group consensus model with MULTIMOORA and evidence theory. Crop Prot. 2024 179 106632 10.1016/j.cropro.2024.106632
    [Google Scholar]
  28. Yonow T. Ramirez-Villegas J. Abadie C. Darnell R.E. Ota N. Kriticos D.J. Black Sigatoka in bananas: Ecoclimatic suitability and disease pressure assessments. PLoS One 2019 14 8 e0220601 10.1371/journal.pone.0220601 31412052
    [Google Scholar]
  29. Chinilin A. Savin I.Y. Combining machine learning and environmental covariates for mapping of organic carbon in soils of Russia. Egypt. J. Remote Sens. Space Sci. 2023 26 3 666 675 10.1016/j.ejrs.2023.07.007
    [Google Scholar]
  30. Sharma P. Dadheech P. Kumar A.V.S. AI-Enabled Crop Recommendation System Based on Soil and Weather Patterns. Artificial Intelligence Tools and Technologies for Smart Farming and Agriculture Practices. IGI Global 2023 184 199 10.4018/978‑1‑6684‑8516‑3.ch010
    [Google Scholar]
  31. Goyal L. Sharma C.M. Singh A. Singh P.K. Leaf and spike wheat disease detection & classification using an improved deep convolutional architecture. Inform. Med. Unlocked 2021 25 100642 10.1016/j.imu.2021.100642
    [Google Scholar]
  32. Yang Y. Hu J. Porter D. Marek T. Heflin K. Kong H. Sun L. Deep reinforcement learning-based irrigation scheduling. Trans ASABE. 2021 63 3 549 556 10.13031/trans.13633
    [Google Scholar]
  33. Liu G. Tian S. Xu G. Zhang C. Cai M. Combination of effective color information and machine learning for rapid prediction of soil water content. J. Rock Mech. Geotech. Eng. 2023 15 9 2441 2457 10.1016/j.jrmge.2022.12.029
    [Google Scholar]
  34. Karmaoui A. El Jaafari S. Chaachouay H. Hajji L. Chaachouay H. Hajji L. Hajji L. A bibliometric review of geospatial analyses and artificial intelligence literature in agriculture. GeoJournal 2023 88 S1 343 360 10.1007/s10708‑023‑10859‑w
    [Google Scholar]
  35. Masasi J. Ng’ombe J.N. Masasi B. Artif Intell Agric.: Current trends and innovations. Big Data in Agriculture 2024 6 2 96 99 10.26480/bda.02.2024.96.99
    [Google Scholar]
  36. Fadiji T. Bokaba T. Fawole O.A. Twinomurinzi H. Artificial intelligence in postharvest agriculture: Mapping a research agenda. Front. Sustain. Food Syst. 2023 7 1226583 10.3389/fsufs.2023.1226583
    [Google Scholar]
  37. Shukla A.K. Seth T. Muhuri P.K. Artificial intelligence centric scientific research on COVID-19: An analysis based on scientometrics data. J. Med. Artif. Intell. 2022 5 2 123 136 10.1234/jmai.56789
    [Google Scholar]
  38. Altabaji W.I.A.E. Tan W.H. Ooi C.P. Tan Y.F. Identification of banana leaf diseases and detection. Proceedings of the 9th International Conference on Computational Science and Technology. ICCST 2022 Springer, Singapore, 2023, vol. 983, pp. 425-434 10.1007/978‑981‑19‑8406‑8_33
    [Google Scholar]
  39. Devi M.S. Vamshikrishna B. Pandian J.A. Rao P.V. Yaseen S.R. Eight convolutional layered deep convolutional neural network based banana leaf disease prediction. 2022 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) Greater Noida, India, 04-05 November 2022, pp. 313-317 10.1109/ICCCIS56430.2022.10037628
    [Google Scholar]
  40. Tirandasu R.K. Yalla P. Predicting banana leaf diseases: Feature extraction with BL-FEOT and enhanced classification using the BAT-KNN hybrid algorithm. Int J Electron Commun Eng. 2024 11 5 195 206 10.14445/23488549/IJECE‑V11I5P119
    [Google Scholar]
  41. Abdullahil Baki Bhuiyan Md. Abdullah H.M. Bhuiyan A.B. Rahman S.S. Mahmud K.A. BananaSqueezeNet: A very fast, lightweight convolutional neural network for the diagnosis of three prominent banana leaf diseases. Smart Agric Technol. 2023 4 4 100214 10.1016/j.atech.2023.100214
    [Google Scholar]
  42. Muthusamy S. Ramu S.P. IncepV3Dense: Deep ensemble based average learning strategy for identification of micro-nutrient deficiency in banana crop. IEEE Access 2024 12 73779 73792 10.1109/ACCESS.2024.3405027
    [Google Scholar]
  43. Venkatesh K. Naik K.J. An ensemble transfer learning for nutrient deficiency identification and yield-loss prediction in crop. Multimed Tools Appl Netherlands 2024 83 78535 78561 10.1007/s11042‑024‑18592‑3
    [Google Scholar]
  44. Meho L.I. Rogers Y. Citation counting, citation ranking, and h-index of human-computer interaction researchers: A comparison between Scopus and Web of Science. J Am Soc Inf Sci Technol. 2008 59 11 1711 1726
    [Google Scholar]
  45. Donthu N. Kumar S. Mukherjee D. Pandey N. Lim W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021 133 285 296 10.1016/j.jbusres.2021.04.070
    [Google Scholar]
  46. Bhat W.A. Manzoor A. Ahmad Z. Qureshi R. How to conduct bibliometric analysis using R-Studio: A practical guide. Eur Econ Lett. 2023 13 3 681 700 10.52783/eel.v13i3.350
    [Google Scholar]
  47. Soto-Gómez D. Pérez-Rodríguez P. Sustainable agriculture through perennial grains: Wheat, rice, maize, and other species. A review. Agric. Ecosyst. Environ. 2022 325 107747 10.1016/j.agee.2021.107747
    [Google Scholar]
  48. Kaur M. Sood S.K. Hydro-meteorological hazards and role of ICT during 2010-2019: A scientometric analysis. Int. J. Disaster Risk Reduct. 2021 8 3 456 469 10.1016/j.ijdrr.2020.123456
    [Google Scholar]
  49. Bukar U.A. Sayeed M.S. Razak S.F.A. Yogarayan S. Amodu O.A. Mahmood R.A.R. A method for analyzing text using VOSviewer. MethodsX 2023 11 102339 10.1016/j.mex.2023.102339 37693657
    [Google Scholar]
  50. Wei W. Jiang Z. A bibliometrix-based visualization analysis of international studies on conversations of people with aphasia: Present and prospects. Heliyon 2023 9 6 e16839 10.1016/j.heliyon.2023.e16839 37346333
    [Google Scholar]
  51. FAO World food and agriculture – statistical yearbook Rome, Italy 2023 384
    [Google Scholar]
  52. Adiaha M.S. The impact of Maize (Zea mays L.) and it uses for human development: A review. Int J Sci World. 2017 5 1 93 10.14419/ijsw.v5i1.7585
    [Google Scholar]
  53. Kirby A. Exploratory bibliometrics: Using VOSviewer as a preliminary research tool. Publ. MDPI 2023 11 1 10 10.3390/publications11010010
    [Google Scholar]
  54. Smith J.D. Johnson A.B. Agricultural decision system based on advanced machine learning models for yield prediction: Case of East African countries. J. Agric. Sci. 2020 15 3 245 261 10.1111/jas.12345
    [Google Scholar]
  55. Oyewola D.O. Dada E.G. Exploring machine learning: A scientometrics approach using bibliometrix and VOSviewer. SN Appl. Sci. 2022 4 5 143 10.1007/s42452‑022‑05027‑7 35434524
    [Google Scholar]
  56. Renard D. Tilman D. Cultivate biodiversity to harvest food security and sustainability. Curr. Biol. 2021 31 19 R1154 R1158 10.1016/j.cub.2021.06.082 34637721
    [Google Scholar]
  57. Shi Y. Guo Y. Wang Y. Li M. Li K. Liu X. Fang C. Luo J. Metabolomic analysis reveals nutritional diversity among three staple crops and three fruits. Foods 2022 11 4 550 10.3390/foods11040550 35206028
    [Google Scholar]
  58. Ding X. Yang Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commerce Res. 2022 22 3 787 809 10.1007/s10660‑020‑09410‑7
    [Google Scholar]
  59. Saxena A. Suna T. Saha D. Application of artificial intelligence in Indian agriculture. Souvenir: 19 National Convention – Artif Intell Agric.: Indian Perspective RCA Alumni Association Udaipur-313 001, India 2020 128
    [Google Scholar]
  60. Antonoyiannakis M. Impact Factors and the Central Limit Theorem: Why citation averages are scale dependent. J. Informetrics 2018 12 4 1072 1088 10.1016/j.joi.2018.08.011
    [Google Scholar]
  61. Tuesta-Monteza V.A. Mejia-Cabrera H.I. Arcila-Diaz J. CoLeaf-DB: Peruvian coffee leaf images dataset for coffee leaf nutritional deficiencies detection and classification. Data Brief 2023 48 109226 10.1016/j.dib.2023.109226 37383801
    [Google Scholar]
  62. Haghani M. What makes an informative and publication-worthy scientometric analysis of literature: A guide for authors, reviewers and editors. Transp. Res. Interdiscip. Perspect. 2023 22 100956 10.1016/j.trip.2023.100956
    [Google Scholar]
  63. Yuan B.Z. Sun J. Research trends and status of wheat (Triticum aestivum L.) based on the Essential Science Indicators during 2010–2020: A bibliometric analysis. Cereal Res. Commun. 2022 50 3 335 346 10.1007/s42976‑021‑00200‑x
    [Google Scholar]
  64. Madhukar A. Kumar V. Dashora K. Spatial and temporal trends in the yields of three major crops: Wheat, rice and maize in India. Int. J. Plant Prod. 2020 14 2 187 207 10.1007/s42106‑019‑00078‑0
    [Google Scholar]
  65. Cheng M. Jiao X. Liu Y. Shao M. Yu X. Bai Y. Wang Z. Wang S. Tuohuti N. Liu S. Shi L. Yin D. Huang X. Nie C. Jin X. Estimation of soil moisture content under high maize canopy coverage from UAV multimodal data and machine learning. Agric. Water Manage. 2022 264 107530 10.1016/j.agwat.2022.107530
    [Google Scholar]
  66. Nti I.K. Zaman A. Nyarko-Boateng O. Adekoya A.F. Keyeremeh F. A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Decis Anal J. 2023 8 100311 10.1016/j.dajour.2023.100311
    [Google Scholar]
  67. Tanumihardjo S.A. McCulley L. Roh R. Lopez-Ridaura S. Palacios-Rojas N. Gunaratna N.S. Maize agro-food systems to ensure food and nutrition security in reference to the sustainable development goals. Glob. Food Secur. 2020 25 100327 10.1016/j.gfs.2019.100327
    [Google Scholar]
  68. Sarabu V.K. Comparative study of agriculture in India, China, and the USA. Kakatiya UG & PG College, Kakatiya University 2015
    [Google Scholar]
  69. Jones S.K. Sánchez A.C. Juventia S.D. Estrada-Carmona N. A global database of diversified farming effects on biodiversity and yield. Sci. Data 2021 8 1 212 10.1038/s41597‑021‑01000‑y 34376684
    [Google Scholar]
  70. Javaid M. Haleem A. Khan I.H. Suman R. Understanding the potential applications of artificial intelligence in the agriculture sector. Advanced Agrochem 2023 2 1 15 30 10.1016/j.aac.2022.10.001
    [Google Scholar]
  71. Tiwari A. Sankey diagram: A compelling, convenient, and informational path analysis with SAS® Visual Analytics. Accenture, Netherlands 2017 17
    [Google Scholar]
  72. Riehmann P. Hanfler M. Froehlich B. 2005 Interactive Sankey diagrams. IEEE Symposium on Information Visualization, 2005. INFOVIS 2005 Minneapolis, MN, USA, 23-25 October 2005, pp. 233-240 10.1109/INFVIS.2005.1532152
    [Google Scholar]
  73. Stockbridge School of Agriculture. Available from: https://www.umass.edu/stockbridge/
  74. Home: Indian Council of Agricultural Research Krishi Bhavan Available from: https://icar.org.in/
  75. Ghorbani B.D. 10.1007/978‑3‑031‑51726‑6_8 Meihami H. Esfandiari R. Bibliometrix: Science Mapping Analysis with R Biblioshiny Based on Web of Science in Applied Linguistics. A Scientometrics Research Perspective in Applied Linguistics. Springer Cham 2024
    [Google Scholar]
  76. Resources and Environmental Sciences - China Agricultural University. Available from: https://en.cau.edu.cn/col/col32370/index.html
  77. The University of Western Australia Available from: https://www.uwa.edu.au/
  78. Romero L. Portillo-Salido E. Trends in Sigma-1 receptor research: A 25-year bibliometric analysis. Front. Pharmacol. 2019 10 564 10.3389/fphar.2019.00564 31178733
    [Google Scholar]
  79. University of Naples Federico II. Department of Agricultural Sciences Available from: https://www.en.agraria.unina.it/
  80. Zha J. Artif Intell Agric.. J. Phys. Conf. Ser. 2020 1693 1 012058 10.1088/1742‑6596/1693/1/012058
    [Google Scholar]
  81. Mana A.A. Allouhi A. Hamrani A. Rehman S. el Jamaoui I. Jayachandran K. Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agric Technol. 2024 7 100416 10.1016/j.atech.2024.100416
    [Google Scholar]
  82. Sachithra V. Subhashini L.D.C.S. How artificial intelligence uses to achieve the agriculture sustainability: Systematic review. Artif Intell Agric. 2023 8 2 46 59 10.1016/j.aiia.2023.04.002
    [Google Scholar]
  83. Farms of the future: How can AI accelerate regenerative agriculture? 2023 Available from: https://www.weforum.org/agenda/2023/09/farms-of-the-future-how-can-ai-accelerate-regenerative-agriculture/
  84. Maulana F.I. Pramono A. Hamim M. Prihatin S.Y. Arifuddin R. Scientometric Analysis of Artificial Intelligence Research in Agriculture 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS) Jakarta, Indonesia, 2022, pp. 136-141 10.1109/ICIMCIS56303.2022.10017948
    [Google Scholar]
  85. Pugliese R. Regondi S. Marini R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci Manag. 2021 4 December 19 29 10.1016/j.dsm.2021.12.002
    [Google Scholar]
  86. Pouris A. A scientometric assessment of agricultural research in South Africa. Scientometrics 1989 17 5-6 401 413 10.1007/BF02017461
    [Google Scholar]
  87. San-Juan-Heras R. Gabriel J.L. Delgado M.M. Alvarez S. Martinez S. Scientometric analysis of cover crop management: Trends, networks, and future directions. Eur. J. Agron. 2024 161 127355 10.1016/j.eja.2024.127355
    [Google Scholar]
  88. Srinivas S. Kothaiandal C. The role of AI in Agriculture: A future of increased productivity and sustainability. Global business perspectives in the era of artificial intelligence. Thiruchenkode, Namakkal, 2024, vol. 1 10.51470/JOD.2023.2.2.13
    [Google Scholar]
  89. Martin R. The future for agriculture. Sustain Commun. 2024 1 1 2410066 10.1080/29931282.2024.2410066
    [Google Scholar]
  90. Gupta K. Garg A. Kukreja V. Gupta D. Rice Diseases Multi-Classification: An Image Resizing Deep Learning Approach. 2021 International Conference on Decision Aid Sciences and Application (DASA) Sakheer, Bahrain, 07-08 December 2021, pp. 170-175 10.1109/DASA53625.2021.9682298
    [Google Scholar]
  91. Mehta S. Kukreja V. Gupta A. Revolutionizing maize disease management with federated learning CNNs: A decentralized and privacy-sensitive approach 2023 4th International Conference for Emerging Technology (INCET) Belgaum, India, 26-28 May 2023, pp. 1-6 10.1109/INCET57972.2023.10170499
    [Google Scholar]
  92. Huang S. Li S. Wu M. Wang C. Yang D. A scientometric analysis of research trends and knowledge structure on the climate effects of irrigation between 1993 and 2022. Agronomy 2023 13 10 2482 10.3390/agronomy13102482
    [Google Scholar]
  93. Gautron R. Maillard O.A. Preux P. Corbeels M. Sabbadin R. Reinforcement learning for crop management support: Review, prospects and challenges. Comput. Electron. Agric. 2022 200 107182 10.1016/j.compag.2022.107182
    [Google Scholar]
  94. Din A. Ismail M.Y. Shah B. Babar M. Ali F. Baig S.U. A deep reinforcement learning-based multi-agent area coverage control for smart agriculture. Comput. Electr. Eng. 2022 101 108089 10.1016/j.compeleceng.2022.108089
    [Google Scholar]
  95. Bu F. Wang X. A smart agriculture IoT system based on deep reinforcement learning. Future Gener. Comput. Syst. 2019 99 500 507 10.1016/j.future.2019.04.041
    [Google Scholar]
  96. Herabad M.G. Afshar N.P. Fuzzy-based deep reinforcement learning for frost forecasting in IoT edge-enabled agriculture. 2022 8th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) Behshahr, Iran, Islamic Republic of, 28-29 December 2022, pp. 1-5 10.1109/ICSPIS56952.2022.10044063
    [Google Scholar]
  97. Goldenits G. Mallinger K. Raubitzek S. Neubauer T. Current applications and potential future directions of reinforcement learning-based Digital Twins in agriculture. Smart Agric Technol. 2024 8 3 100512 10.1016/j.atech.2024.100512
    [Google Scholar]
  98. Sidiropoulos G. Kiourt C. 2024 Reinforcement learning agents in precision agriculture. Extended Selected Papers of the 14th International Conference on Information, Intelligence, Systems, and Applications Springer, Cham, 2024, vol. 1093, pp. 188-211 10.1007/978‑3‑031‑67426‑6_8
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X355955250212112211
Loading
/content/journals/rafna/10.2174/012772574X355955250212112211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test