Skip to content
2000
image of α-Phellandrene: A Promising Natural Remedy for Rotenone-Induced Parkinson's Disease

Abstract

Parkinson's Disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to motor dysfunction and non-motor symptoms. Current treatments primarily offer symptomatic relief without halting disease progression. This has driven the exploration of natural compounds with neuroprotective properties. In previous studies, α-phellandrene, a monoterpene present in essential oils of various aromatic plants, has shown promise in mitigating neurodegenerative processes. This study focuses on alpha-phellandrene's therapeutic potential in a rotenone-induced Parkinson's Disease model. Rotenone, a mitochondrial complex I inhibitor, is commonly used to induce PD-like symptoms in experimental models due to its ability to mimic the neurodegenerative processes observed in human PD. Our review explores the neuroprotective effects of alpha-phellandrene, focusing on its antioxidant, anti-inflammatory, and anti-apoptotic properties. Experimental groups of rodents received rotenone to induce PD-like symptoms, followed by alpha-phellandrene treatment. Biochemical analyses were performed to measure oxidative stress markers, inflammatory cytokines, and apoptotic signals in brain tissues. Results indicated that alpha-phellandrene administration significantly improved motor function and reduced rotenone-induced oxidative stress, inflammation, and apoptosis in dopaminergic neurons. Histopathological examinations revealed a notable preservation of neuronal integrity in alpha-phellandrene-treated groups compared to controls. In conclusion, alpha-phellandrene demonstrates considerable neuroprotective effects in a rotenone-induced Parkinson's dmodel. These findings suggest that alpha-phellandrene could be a promising natural therapeutic agent for PD, warranting further investigation into its mechanisms of action and potential clinical applications. Specifically, our review indicates that alpha-phellandrene may exert neuroprotective effects by various mechanisms, such as reducing oxidative stress, modulating neurotransmitter levels, or inhibiting neuroinflammation. These mechanisms highlight its potential to alleviate PD symptoms and slow disease progression, underscoring the need for in-depth studies to validate these therapeutic effects in clinical settings

Loading

Article metrics loading...

/content/journals/rafna/10.2174/012772574X341801241218051720
2025-01-29
2025-09-26
Loading full text...

Full text loading...

References

  1. Kouli A. Torsney K.M. Kuan W.L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Park. Dis. Pathog. Clin. Asp. 2018 Dec 3 26 10.15586/codonpublications.parkinsonsdisease.2018.ch1 30702842
    [Google Scholar]
  2. Radice M. Durofil A. Buzzi R. Baldini E. Martínez A.P. Scalvenzi L. Manfredini S. Alpha-phellandrene and alpha-phellandrene-rich essential oils: a systematic review of biological activities, pharmaceutical and food applications. Life 2022 12 10 1602 10.3390/life12101602 36295037
    [Google Scholar]
  3. Testa C.M. Sherer T.B. Greenamyre J.T. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res. Mol. Brain Res. 2005 134 1 109 118 10.1016/j.molbrainres.2004.11.007 15790535
    [Google Scholar]
  4. Singh M.P. Singh B. Rai S.N. Singh P. Varshney R. Chaturvedi V.K. Vamanu E. Promising drug targets and associated therapeutic interventions in Parkinson’s disease. Neural Regen. Res. 2021 16 9 1730 1739 10.4103/1673‑5374.306066 33510062
    [Google Scholar]
  5. Ahmed S. El-Sayed M.M. Kandeil M.A. Khalaf M.M. Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson’s disease in rats. Saudi Pharm. J. 2022 30 6 863 873 10.1016/j.jsps.2022.03.005 35812142
    [Google Scholar]
  6. Ibarra-Gutiérrez M.T. Serrano-García N. Orozco-Ibarra M. Rotenone-induced model of parkinson’s disease: beyond mitochondrial complex I inhibition. Mol. Neurobiol. 2023 60 4 1929 1948 10.1007/s12035‑022‑03193‑8 36593435
    [Google Scholar]
  7. Heinz S. Freyberger A. Lawrenz B. Schladt L. Schmuck G. Ellinger-Ziegelbauer H. Mechanistic investigations of the mitochondrial complex I inhibitor rotenone in the context of pharmacological and safety evaluation. Sci. Rep. 2017 7 1 45465 10.1038/srep45465 28374803
    [Google Scholar]
  8. Singh A. Kukreti R. Saso L. Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules 2019 24 8 1583 10.3390/molecules24081583 31013638
    [Google Scholar]
  9. Lull M.E. Block M.L. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010 7 4 354 365 10.1016/j.nurt.2010.05.014 20880500
    [Google Scholar]
  10. Mader B.J. Pivtoraiko V.N. Flippo H.M. Klocke B.J. Roth K.A. Mangieri L.R. Shacka J.J. Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem. Neurosci. 2012 3 12 1063 1072 10.1021/cn300145z 23259041
    [Google Scholar]
  11. Matuz-Mares D. González-Andrade M. Araiza-Villanueva M.G. Vilchis-Landeros M.M. Vázquez-Meza H. Mitochondrial calcium: effects of its imbalance in disease. Antioxidants 2022 11 5 801 10.3390/antiox11050801 35624667
    [Google Scholar]
  12. Ramesh S. Arachchige A.S.P.M. Depletion of dopamine in Parkinson’s disease and relevant therapeutic options: A review of the literature. AIMS Neurosci. 2023 10 3 200 231 10.3934/Neuroscience.2023017 37841347
    [Google Scholar]
  13. Stojanović N.M. Ranđelović P.J. Simonović M. Radić M. Todorović S. Corrigan M. Harkin A. Boylan F. Essential oil constituents as anti-inflammatory and neuroprotective agents: an insight through microglia modulation. Int. J. Mol. Sci. 2024 25 10 5168 10.3390/ijms25105168 38791205
    [Google Scholar]
  14. Razak A.M. Tan J.K. Mohd Said M.M. Makpol S. Modulating effects of zingiberaceae phenolic compounds on neurotrophic factors and their potential as neuroprotectants in brain disorders and age-associated neurodegenerative disorders: a review. Nutrients 2023 15 11 2564 10.3390/nu15112564 37299526
    [Google Scholar]
  15. More S.V. Choi D.K. Emerging preclinical pharmacological targets for Parkinson’s disease. Oncotarget 2016 7 20 29835 29863 10.18632/oncotarget.8104 26988916
    [Google Scholar]
  16. He J. Zhu G. Wang G. Zhang F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid. Med. Cell. Longev. 2020 2020 1 12 10.1155/2020/6137521 32714488
    [Google Scholar]
  17. Channer B. Matt S.M. Nickoloff-Bybel E.A. Pappa V. Agarwal Y. Wickman J. Gaskill P.J. Dopamine, immunity, and disease. Pharmacol. Rev. 2023 75 1 62 158 10.1124/pharmrev.122.000618 36757901
    [Google Scholar]
  18. Hosseini M. Rajaei Z. Alaei H. Tajadini M. The effects of crocin on 6-OHDA-induced oxidative/nitrosative damage and motor behaviour in hemiparkinsonian rats. Malays. J. Med. Sci. 2016 23 6 35 43 10.21315/mjms2016.23.6.4 28090177
    [Google Scholar]
  19. Wang T. Li C. Han B. Wang Z. Meng X. Zhang L. He J. Fu F. Neuroprotective effects of Danshensu on rotenone-induced Parkinson’s disease models in vitro and in vivo. BMC Complement. Med. Ther. 2020 20 1 20 10.1186/s12906‑019‑2738‑7 32020857
    [Google Scholar]
  20. Sokouti H. Mohajeri D. Nourazar M.A. 6-hydroxydopamine-induced neurotoxicity in rat model of parkinson’s disease: is reversed via anti-oxidative activities of curcumin and aerobic exercise therapy. Physiol. Res. 2022 71 4 551 560 10.33549/physiolres.934929 36165412
    [Google Scholar]
  21. Singh R. Zahra W. Singh S.S. Birla H. Rathore A.S. Keshri P.K. Dilnashin H. Singh S. Singh S.P. Oleuropein confers neuroprotection against rotenone-induced model of Parkinson’s disease via BDNF/CREB/Akt pathway. Sci. Rep. 2023 13 1 2452 10.1038/s41598‑023‑29287‑4 36774383
    [Google Scholar]
  22. Pham-Huy L.A. He H. Pham-Huyc C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008 4 2 89 96 10.59566/IJBS.2008.4089 23675073
    [Google Scholar]
  23. Zhang J.M. An J. Cytokines, inflammation, and pain. Int. Anesthesiol. Clin. 2007 45 2 27 37 10.1097/AIA.0b013e318034194e 17426506
    [Google Scholar]
  24. Guerra R.C. Zuñiga-Muñoz A. Guarner Lans V. Díaz-Díaz E. Tena Betancourt C.A. Pérez-Torres I. Modulation of the activities of catalase, cu-zn, mn superoxide dismutase, and glutathione peroxidase in adipocyte from ovariectomised female rats with metabolic syndrome. Int. J. Endocrinol. 2014 2014 1 10 10.1155/2014/175080 24987414
    [Google Scholar]
  25. Chen T.A. Yang F. Cole G.M. Chan S.O. Inhibition of caspase-3-like activity reduces glutamate induced cell death in adult rat retina11Published on the World Wide Web on 9 May 2001. Brain Res. 2001 904 1 177 188 10.1016/S0006‑8993(01)02485‑4 11516428
    [Google Scholar]
  26. Amalraj A. Pius A. Gopi S. Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J. Tradit. Complement. Med. 2017 7 2 205 233 10.1016/j.jtcme.2016.05.005 28417091
    [Google Scholar]
  27. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013 53 1 401 426 10.1146/annurev‑pharmtox‑011112‑140320 23294312
    [Google Scholar]
  28. Zhang T. Ma C. Zhang Z. Zhang H. Hu H. NF‐κB signaling in inflammation and cancer. MedComm 2021 2 4 618 653 10.1002/mco2.104 34977871
    [Google Scholar]
  29. Kunnumakkara A.B. Sailo B.L. Banik K. Harsha C. Prasad S. Gupta S.C. Bharti A.C. Aggarwal B.B. Chronic diseases, inflammation, and spices: how are they linked? J. Transl. Med. 2018 16 1 14 10.1186/s12967‑018‑1381‑2 29370858
    [Google Scholar]
  30. Han J. Wu J. Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000 Res. 2020 9 653 10.12688/f1000research.22092.1 32612808
    [Google Scholar]
  31. Arcaro A. Guerreiro A. The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr. Genomics 2007 8 5 271 306 10.2174/138920207782446160 19384426
    [Google Scholar]
  32. Susanto A. Hartajanie L. Wu C.C. α‑Phellandrene enhances the apoptosis of HT‑29 cells induced by 5‑fluorouracil by modulating the mitochondria‑dependent pathway. Oncol. Rep. 2024 51 4 61 10.3892/or.2024.8720 38456489
    [Google Scholar]
  33. Algeciras-Schimnich A. Barnhart B.C. Peter M.E. Apoptosis Dependent and Independent Functions of Caspases. Madame Curie Bioscience Database Austin (TX) Landes Bioscience 2013 1 6
    [Google Scholar]
  34. Hartmann A. Hunot S. Michel P.P. Muriel M.P. Vyas S. Faucheux B.A. Mouatt-Prigent A. Turmel H. Srinivasan A. Ruberg M. Evan G.I. Agid Y. Hirsch E.C. Caspase-3: A vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc. Natl. Acad. Sci. USA 2000 97 6 2875 2880 10.1073/pnas.040556597 10688892
    [Google Scholar]
  35. Vargas-Martínez F. Uvnäs-Moberg K. Petersson M. Olausson H.A. Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog. Neurobiol. 2014 123 37 78 10.1016/j.pneurobio.2014.10.001 25449701
    [Google Scholar]
  36. Brasier A.R. The nuclear factor- B-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc. Res. 2010 86 2 211 218 10.1093/cvr/cvq076 20202975
    [Google Scholar]
  37. Xiao Y.Q. Malcolm K. Worthen G.S. Gardai S. Schiemann W.P. Fadok V.A. Bratton D.L. Henson P.M. Cross-talk between ERK and p38 MAPK mediates selective suppression of pro-inflammatory cytokines by transforming growth factor-β. J. Biol. Chem. 2002 277 17 14884 14893 10.1074/jbc.M111718200 11842088
    [Google Scholar]
  38. Brunet A. Bonni A. Zigmond M.J. Lin M.Z. Juo P. Hu L.S. Anderson M.J. Arden K.C. Blenis J. Greenberg M.E. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999 96 6 857 868 10.1016/S0092‑8674(00)80595‑4 10102273
    [Google Scholar]
  39. Eskandari E. Eaves C.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 2022 221 6 e202201159 10.1083/jcb.202201159 35551578
    [Google Scholar]
  40. Khan A. Neuroprotection: Targeting multiple pathways by naturally occurring phytochemicals. Biomedicines 2020 8 8 284 10.3390/biomedicines8080284 32806490
    [Google Scholar]
  41. Baig M.W. Majid M. Nasir B. Hassan S.S. Bungau S. Haq I. Toxicity evaluation induced by single and 28-days repeated exposure of withametelin and daturaolone in Sprague Dawley rats. Front. Pharmacol. 2022 13 999078 10.3389/fphar.2022.999078 36225589
    [Google Scholar]
  42. Lamptey R.N.L. Chaulagain B. Trivedi R. Gothwal A. Layek B. Singh J. A review of the common neurodegenerative disorders: current therapeutic approaches and the potential role of nanotherapeutics. Int. J. Mol. Sci. 2022 23 3 1851 10.3390/ijms23031851 35163773
    [Google Scholar]
/content/journals/rafna/10.2174/012772574X341801241218051720
Loading
/content/journals/rafna/10.2174/012772574X341801241218051720
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Nfkb ; rotenone ; Parkinson's' disease ; α-Phellandrene ; inflammatory cytokines
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test