Recent Advances in Anti-Infective Drug Discovery - Volume 17, Issue 2, 2022
Volume 17, Issue 2, 2022
-
-
Medicinal Importance, Pharmacological Activities, and Analytical Aspects of Strictinin: A Mini-Review
More LessBackground: Plants and their derived products have been used in history as food and medicine. Plant materials are rich sources of fiber, minerals, vitamins, and bioactive phytochemicals, which are useful for human beings. Strictinin is an important phytoconstituent of green tea. Methods: Present work mainly focuses on the biological importance, therapeutic potential, and pharmacological activities of strictinin in medicine. Numerous scientific data have been collected from various literature databases such as Google Scholar, Science Direct, PubMed, and Scopus database in order to realize the health beneficial potential of strictinin. Pharmacological data has been collected and analyzed in the present work to find the effectiveness of strictinin against human disorders and complications. Analytical data of strictinin has been also collected and analyzed in the present work. Results: Scientific data analysis revealed the biological importance of strictinin in medicine. Scientific data analysis signified the therapeutic benefit of strictinin mainly due to its anticancer, antimicrobial, antibacterial, antiviral, and antioxidant activity. However, enzymatic activities, cytotoxicity, effectiveness on skin disorders, and osteogenic potential of strictinin have also been discussed. Analytical data revealed the importance of modern analytical techniques in medicine for the separation, identification, and isolation of strictinin. Conclusion: Present work signified the biological importance and therapeutic benefits of strictinin in medicine and other allied health sectors.
-
-
-
Vigilance Needed in Treating Leprosy Patients in Accordance with WHO’s AWaRe
More LessBackground: Leprosy is a highly stigmatized disease that can range from a minor skin lesion to life-threatening conditions such as deformities and disability. The World Health Organization (WHO) has developed a tool called "Access, Watch, and Reserve" (AWaRe) to reduce antibiotic misuse and abuse. Aim: The purpose of this review is to determine whether the drugs used in the leprosy treatment regimen are complied with the AWaRe programme, in order to improve the quality of hospital antibiotic use and reduce the incidence of antimicrobial resistance (AMR). Methods: We started by looking for antibiotics that are used in the treatment and chemoprophylaxis of leprosy, as defined by the WHO's AWaRe classification. Furthermore, we look for studies on antibiotics that showed sensitivity or less resistance after antimicrobial sensitivity testing (AST) on isolates from infected leprosy ulcers, as well as their AWaRe category. Results: There were 32 studies found, but only 5 of them met the inclusion criteria. They consisted of four cross-sectional studies and one descriptive retrospective study. A total of 19 antibiotics were identified in 5 studies, with 9 (47.4%) antibiotics in the access category, 8 (42.1%) antibiotics in the watch group, and 2 (10.5%) antibiotics in the reserve group. Conclusion: As per our knowledge, this is the first study to explore antibiotics in leprosy treatment, chemoprophylaxis, and complications such as ulcer compliance with the AWaRe programme. Antimicrobial resistance is on the rise, which is a global issue that continues to pose challenges to clinical practices. This review may provide physicians with an overview of the current state of drug prescribing trends in leprosy, whether in accordance with the AWaRe classification in selecting the right drug when the use of antimicrobials is indicated and may also aid in rational drug prescribing.
-
-
-
Assessment of the Anti-Malarial Properties of Dihydroartemisinin- Piperaquine Phosphate Solid Lipid-Based Tablets
More LessBackground: Artemisininbased combination therapies (ACTs) typified by dihydroartemisinin- piperaquine phosphate are first-line drugs used in the treatment of Plasmodium falciparum malaria. However, the emergence of drug resistance to ACTs shows the necessity to develop novel sustained release treatments in order to ensure maximum bioavailability. Objectives: To formulate dihydroartemisinin (DHA)-piperaquine phosphate (PQ) sustained release tablets based on solidified reverse micellar solutions (SRMS). Methods: The SRMS was prepared by fusion using varying ratios of Phospholipon® 90H and Softisan® 154 and characterised. The tablets were prepared by using an in-house made and validated mould. The formulations were tested for uniformity of weight, hardness, friability, softening time, erosion time and in vitro-in vivo dissolution rate. Antimalarial properties were studied using modified Peter’s 4-days suppressive test in mice. One-way analysis of variance (ANOVA) was used in the analysis of results. Results: Smooth caplets, with average weight of 1300 ± 0.06 mg to 1312 ± 0.11 mg, drug content of 61 mg for DHA and t 450 mg for PQ. Tablet hardness ranged from 7.1 to 9.0 Kgf and softening time of 29.50 ± 1.90 min. Erosion time of 62.00 ± 2.58 to 152.00 ± 1.89 min were obtained for tablets formulated with Poloxamer 188 (Batches R2, S2 and T2) which significantly reduced the softening and erosion time (p < 0.05). In vitro release showed that the optimized formulations had a maximum release at 12 h. Formulations exhibited significantly higher parasitaemia clearance and in vivo absorption compared to marketed formulations at day 7 (p < 0.05). Conclusion: DHA-PQ tablets based on SRMS were much easier and relatively cheaper to produce than compressed tablets. They also showed exceptionally better treatment of malaria owing to their sustained release properties and improved bioavailability and are recommended to Pharmaceutical companies for further studies.
-
-
-
Design, Synthesis, Anti-microbial and Molecular Docking Studies of Novel 5-Pyrazyl-2-Sulfanyl-1, 3, 4-Oxadiazole Derivatives
Authors: Rina Das, Dinesh K. Mehta, Sumeet Gupta and Meenakshi DhanawatBackground: Chemical modification of Oxadiazole may lead to a potent therapeutic agent. A series of novel 5-pyrazyl-2-sulfanyl-1, 3, 4-oxadiazole derivatives (5ag) have been synthesised utilising pyrazinoic acid as a precursor. The new oxadiazole compounds were docked against potential targets and evaluated for antibacterial and antitubercular activity. Methods: The 5-pyrazyl-2-substituted sulfanyl-1, 3,4-oxadiazole derivatives (5a-g) were synthesized from the crucial intermediate 2-sulfanyl-5-pyrazyl-1, 3,4-oxadiazole (4), which was prepared by treating the 2-pyrazyl hydrazide with CS2 and pyridine. IR, 1HNMR, 13C, MS and elemental analyses were used to confirm the chemical structures. Results: Antimicrobial activity was determined for each synthesized compound. Additionally, compounds were evaluated for antitubercular activity against the Mycobacterium Tuberculosis H37Rv strain. Compounds 5c, 5g, and 5a had a favourable antibacterial profile, while 5c and 5g (MIC = 25 g/ml) demonstrated potential antitubercular activity when compared to the other produced compounds. Molecular docking experiments using V-Life Science MDS 4.6 supplemented the biological data. Conclusion: Each compound has been tested for antibacterial and antitubercular action against a variety of microorganism strains and exhibits considerable activity. Additionally, molecular docking analysis confirmed the experimental results by describing improved interaction patterns.
-
-
-
Physicochemical Properties, Antioxidant and Antimicrobial Activities of Ethiopian Sweet Basil (Ocimum basilicum L.) Leaf and Flower Oil Extracts
Authors: Getachew Yibeltal, Zekeria Yusuf and Mulugeta DestaBackground: The occurrence of multidrug resistant pathogenic microbes has initiated the development of natural antimicrobial agents from plants. Oils from herbal sources have drawn scientific interest due to their potential source of bioactive compounds. Objective: This study was aimed to examine the physicochemical and biological activities including antioxidant and antimicrobial potential of the oil extracted from basil leaves and flowers. Methods: The physicochemical properties of the oil extracts were measured based on oil yield, specific gravity, acid value, free fatty acids and peroxide values whilst the antioxidant activities were assessed by ascorbic acid, DPPH (2, 2- diphenyl-1-picrylhydrazyl), and hydrogen peroxide free radical scavenging activities. The antimicrobial experiment was conducted based on disc diffusion and broth dilution methods. Results: The result of antioxidant activity of Ocimum basilicum indicated significantly higher DPPH (86.45%) for leaf oil extract. The strongest antibacterial activity with maximum zone of inhibition (15.47 mm), minimum inhibitory concentration MIC (0.09 μg/ml), and corresponding minimum bactericidal concentration MBC (0.19 μg/ml) was exhibited by the flower oil extract against Staphylococcus aureus ATCC-25923. The strongest antifungal activity with maximum zone of inhibition (15.90 mm), MIC (0.125 μg/ml, the least value), and minimum fungicidal concentration MFC (0.09 μg/ml) were recorded for leaf oil against Candida albicans. Conclusion: It can be concluded from the present study that the sweet basil flower and leaf oil extracts can be potential antioxidant, antibacterial, and antifungal agents.
-
-
-
A Study on the Bio-responses of a Freshwater Snail (Biomphalaria alexandrina) to Fungal-derived Compounds
Authors: Amal A.I. Mekawey, Ahmed M. Salah and Mohammed YosriBackground: Biomphalaria alexandrina snails, as transitional hosts of schistosomiasis, plays an essential part in the spread of the illness. Control of these snails by the substance molluscicides antagonistically influences the oceanic climate, causing poisonous and cancer-causing consequences for non-target life forms. Objective: Looking for new naturally safe substances that can treat schistosomiasis disease with minimal side effects on the environment and plants, fish wealth and do not affect vital human functions. Methods: Fifty fungal species were used to evaluate their activity against Biomphalaria alexandrina. Study the effect of the fungal extract on vital functions of Biomphalaria alexandrina and fish wealth. Purification of active substances and identification of their chemical structures. Results: Cladosporium nigrellum and Penicillium aurantiogresium metabolites were effective against B. alexandrina snails, and the effects of promising fungal extracts sublethal concentrations (IC10 & IC25) on the levels of steroid sex hormones, liver enzymes, total protein, lipids, albumin and glucose were determined. Chemical analyses of this filtrate separated a compound effective against snails; it was identified. Protein electrophoresis showed that fungal filtrate affects the protein pattern of snails’ haemolymph. Little or no mortality of Daphnia pulex individuals was observed after their exposure to sublethal concentrations of each treatment. Conclusion: Certain compounds from fungal cultures could be safely used for biological control of Biomphalaria alexandrina snails.
-
Most Read This Month
