Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2772-4344
  • E-ISSN: 2772-4352

Abstract

Background: The human respiratory syncytial virus (RSV) is responsible for causing upper and lower respiratory tract infections in young children. RSV Fusion (F) protein is a surface glycoprotein that facilitates virus entry into host cells. Thus, newer designing of RSV Fusion (F) protein inhibitors is required on an urgent basis. Methods: In the present study, we have developed statistically robust. Quantitative structure-activity relationship (QSAR) models for the effective designing of newer analogues of piperazinylquinoline derivatives (H1-H12). Results: Our developed models were retained with high statistical parameters (R2 > 0.6 and Q2 0.5). Our developed pharmacophore, model (AADHRR_2) (indicating that two hydrogen bond acceptors, one hydrogen bond donor, one hydrophobic group, and two aromatic rings) is crucial for retaining the activities of piperazinylquinoline derivatives against RSV. Moreover, docking analysis of 12 new analogues on RSV pre-F in complex with 5C4 Fab (PDB ID: 5W23) and post-F trimeric protein (PDB ID: 3RRR) suggested higher affinities of these molecules against studied targets with good docking scores. Conclusion: Thus, one can implement developed QSAR models, docking analogy and Pharmacophore models for identifications of potent leads for designed molecules as RSV Fusion (F) protein inhibitors.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/2772434418666221125090113
2023-08-01
2025-12-17
Loading full text...

Full text loading...

/content/journals/raaidd/10.2174/2772434418666221125090113
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test