Skip to content
2000
image of Green Synthesis of Silver Nanoparticles using Punica granatum Leaf Extract: A Novel Approach to Combat Quinolone-Resistant Urinary Tract Infective Pathogens

Abstract

Introduction

Nanoparticles obtained through green synthesis play remarkable roles in biomedical applications. Urinary tract infections (UTIs) are a nightmare for the mass population, especially for women, and quinolone-resistant UTI bacteria worsen the situation. Our current investigation aimed to control quinolone-resistant pathogenic UTI bacteria with green-synthesized silver nanoparticles (AgNPs).

Methods

Visual observation of color change, UV-Vis spectroscopic analysis, FTIR (Fourier Transform Infrared Spectroscopy), DLS (Dynamic Light Scattering), XRD (X-ray Diffraction), and TEM (Transmission Electron Microscopy) techniques were used to effectively characterize the biosynthesized AgNPs. sp., and bacteria were isolated and identified using biochemical and molecular identification techniques from urine samples of hospitalized patients with UTI. These bacteria showed quinolone resistance to up to fourth-generation antibiotics.

Results and Discussion

The results elucidated the synthesis of spherical-shaped nano-silvers coated with polyphenols. These biosynthesized AgNPs showed moderate polydispersity and narrow distribution. The antibacterial efficiency of the AgNPs was determined against isolated bacterial strains. and exhibited the highest sensitivity to the nanoparticles. Nanoparticles at a concentration of 128 µg/ml inhibited bacterial growth to a great extent and gave a maximum inhibition zone of 14.67 ± 0.577 mm in diameter for both bacterial strains. In addition, toxicity analysis of synthesized nanoparticles brine shrimp lethality assay (BSLA) showed a very low cytotoxicity level (2398.83 µg/ml), depicting safety for human use.

Conclusion

We can conclude that leaf-synthesized AgNPs could possess significant biomedical applications as potential antibacterial agents due to their bactericidal activity and low cytotoxicity.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344386982250826062715
2025-09-10
2025-12-06
Loading full text...

Full text loading...

References

  1. Ahsan A. Farooq M.A. Ahsan B.A. Parveen A. Green synthesis of silver nanoparticles using Parthenium hysterophorus: Optimization, characterization and in vitro therapeutic evaluation. Molecules 2020 25 15 3324 10.3390/molecules25153324 32707950
    [Google Scholar]
  2. Melkamu W.W. Bitew L.T. Green synthesis of silver nanoparticles using Hagenia abyssinica (Bruce) J.F. Gmel plant leaf extract and their antibacterial and anti-oxidant activities. Heliyon 2021 7 11 e08459 10.1016/j.heliyon.2021.e08459 34901505
    [Google Scholar]
  3. Asif M. Yasmin R. Asif R. Ambreen A. Mustafa M. Umbreen S. Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose Response 2022 20 2 15593258221088709 10.1177/15593258221088709 35592270
    [Google Scholar]
  4. Capuzzo A. Bacterial synthesis of nanoparticles: Current trends in biotechnology and biomedical fields. Ann Adv Biomed Sci 2021 1 18 10.23880/aabsc‑16000161
    [Google Scholar]
  5. Bayda S. Adeel M. Tuccinardi T. Cordani M. Rizzolio F. The history of nanoscience and nanotechnology: From chemical–physical applications to nanomedicine. Molecules 2019 25 1 112 10.3390/molecules25010112 31892180
    [Google Scholar]
  6. Kanchana R. Fernandes A. Biogenesis of silver nanoparticles from agro-waste. Asian J. Pharm. Clin. Res. 2019 4 1 53 57
    [Google Scholar]
  7. Edison T.J.I. Sethuraman M.G. Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013 104 262 264 10.1016/j.saa.2012.11.084 23274256
    [Google Scholar]
  8. Serdar G. Green biosynthesis of silver nanoparticles were obtained from the extract of pomegranate (Punica granatum L.) leaves by supercritical extraction using microwave method. Celal Bayar Univ J Sci 2023 19 358 10.18466/cbayarfbe.1338606
    [Google Scholar]
  9. Maphetu N. Unuofin J.O. Masuku N.P. Olisah C. Lebelo S.L. Medicinal uses, pharmacological activities, phytochemistry, and the molecular mechanisms of Punica granatum L. (pomegranate) plant extracts: A review. Biomed. Pharmacother. 2022 153 113256 10.1016/j.biopha.2022.113256 36076615
    [Google Scholar]
  10. Khan N. Khan D. Rahman I. Ullah F. Nisar M. Ali K. Ethnobotanical and ecological study of Punica granatum in Dir district, Khyber Pakhtunkhwa, Pakistan. Regul. Mech. Biosyst. 2018 8 4 652 661
    [Google Scholar]
  11. Jain A.S. Pawar P.S. Sarkar A. Junnuthula V. Dyawanapelly S. Bionanofactories for green synthesis of silver nanoparticles: Toward antimicrobial applications. Int. J. Mol. Sci. 2021 22 21 11993 10.3390/ijms222111993 34769419
    [Google Scholar]
  12. Cao D. Shen Y. Huang Y. Levofloxacin versus ciprofloxacin in the treatment of urinary tract infections: Evidence-based analysis. Front. Pharmacol. 2021 12 658095 10.3389/fphar.2021.658095 33897441
    [Google Scholar]
  13. Simões ESAC Oliveira EA Mak RH rinary tract infection in pediatrics: An overview J Pediatr 2020 96 Suppl 1 10.1016/j.jped.2019.10.006
    [Google Scholar]
  14. Wang R. LaSala C. Role of antibiotic resistance in urinary tract infection management: a cost-effectiveness analysis. Am. J. Obstet. Gynecol. 2021 225 5 550.e1 550.e10 10.1016/j.ajog.2021.08.014 34418350
    [Google Scholar]
  15. Foxman B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010 7 12 653 660 10.1038/nrurol.2010.190 21139641
    [Google Scholar]
  16. Neugent M.L. Hulyalkar N.V. Nguyen V.H. Zimmern P.E. De Nisco N.J. Advances in understanding the human urinary microbiome and its potential role in urinary tract infection. MBio 2020 11 2 e00218 e00220 10.1128/mBio.00218‑20 32345639
    [Google Scholar]
  17. Olin S.J. Bartges J.W. Urinary tract infections treatment/comparative therapeutics. Vet. Clin. North Am. Small Anim. Pract. 2022 52 3 581 608 10.1016/j.cvsm.2022.01.002 35465902
    [Google Scholar]
  18. Hutchings M.I. Truman A.W. Wilkinson B. Antibiotics: past, present and future. Curr. Opin. Microbiol. 2019 51 72 80 10.1016/j.mib.2019.10.008 31733401
    [Google Scholar]
  19. Frieri M. Kumar K. Boutin A. Antibiotic resistance. J. Infect. Public Health 2017 10 4 369 378 10.1016/j.jiph.2016.08.007 27616769
    [Google Scholar]
  20. Kang X. Yan J. Huang F. Yang L. On the mechanism of antibiotic resistance and fecal microbiota transplantation. Math. Biosci. Eng. 2019 16 6 7057 7084 10.3934/mbe.2019354 31698603
    [Google Scholar]
  21. Dunne M.W. Aronin S.I. Das A.F. Sulopenem or ciprofloxacin for the treatment of uncomplicated urinary tract infections in women: A phase 3, randomized trial. Clin. Infect. Dis. 2023 76 1 66 77 10.1093/cid/ciac738 36069202
    [Google Scholar]
  22. Naeem A. Badshah S. Muska M. Ahmad N. Khan K. The Current case of quinolones: Synthetic approaches and antibacterial activity. Molecules 2016 21 4 268 10.3390/molecules21040268 27043501
    [Google Scholar]
  23. Atnkut B. Nigussie A. Gebreamanule B. Kumera B. Astatkie T. Assessment of inappropriate use of antibiotics and contributing factors in Awi Administrative Zone, Northwestern Amhara regional State, Ethiopia. New Microbes New Infect. 2025 63 101557 10.1016/j.nmni.2024.101557 39807160
    [Google Scholar]
  24. Sun D. Jeannot K. Xiao Y. Knapp C.W. Horizontal gene transfer mediated bacterial antibiotic resistance. Front. Microbiol. 2019 10 10.3389/fmicb.2019.01933
    [Google Scholar]
  25. C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 4 3 482 501 10.3934/microbiol.2018.3.482 31294229
    [Google Scholar]
  26. Bonna A.S. Pavel S.R. Ferdous J. Khan S.A. Ali M. Antibiotic resistance: An increasingly threatening but neglected public health challenge in Bangladesh. Int J Surg Open 2022 49 100581 10.1016/j.ijso.2022.100581
    [Google Scholar]
  27. Muteeb G. Rehman M.T. Shahwan M. Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023 16 11 1615 10.3390/ph16111615 38004480
    [Google Scholar]
  28. Moradi F. Ghaedi A. Fooladfar Z. Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and anti-bacterial biofilm properties: A systematic review. Heliyon 2023 9 11 e22105 10.1016/j.heliyon.2023.e22105 38034786
    [Google Scholar]
  29. Moradi F. Akbari M. Vakili-Ghartavol R. Ostovari M. Hadi N. Molecular characterization of superbugs K. pneumoniae harboring extended-spectrum β-lactamase (ESBL) and carbapenemase resistance genes among hospitalized patients in southwestern Iran, Western Asia. Heliyon 2024 10 17 e36858 10.1016/j.heliyon.2024.e36858 39263100
    [Google Scholar]
  30. Salam M.A. Al-Amin M.Y. Salam M.T. Antimicrobial resistance: A growing serious threat for global public health. Health Care 2023 11 13 1946 10.3390/healthcare11131946
    [Google Scholar]
  31. Bahrami M. Serati S.P. Moradi F. Hadi N. sabbaghi N, Eslaminezhad S. How nanomaterials act against bacterial structures? a narrative review focusing on nanoparticle molecular mechanisms. Microb. Pathog. 2024 196 107002 10.1016/j.micpath.2024.107002 39393474
    [Google Scholar]
  32. Yin I.X. Zhang J. Zhao I.S. Mei M.L. Li Q. Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed 2020 15 2555 2562 10.2147/IJN.S246764 32368040
    [Google Scholar]
  33. Bruna T. Maldonado-Bravo F. Jara P. Caro N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021 22 13 7202 10.3390/ijms22137202 34281254
    [Google Scholar]
  34. Jamal M.A. Uddin H. Rahman S. Biogenic synthesis of Silver Nanoparticles using Azadirachta indica (Neem) leaf extract targeting inhibitory action against antibiotic resistance bacteria. Antiinfect. Agents 2021 19 5 10.2174/2211352519666210120085253
    [Google Scholar]
  35. Al Mashud M.A. Moinuzzaman M. Hossain M.S. Green synthesis of silver nanoparticles using Cinnamomum tamala (Tejpata) leaf and their potential application to control multidrug resistant Pseudomonas aeruginosa isolated from hospital drainage water. Heliyon 2022 8 7 e09920 10.1016/j.heliyon.2022.e09920 35855998
    [Google Scholar]
  36. Jalab J. Abdelwahed W. Kitaz A. Al-Kayali R. Green synthesis of silver nanoparticles using aqueous extract of Acacia cyanophylla and its antibacterial activity. Heliyon 2021 7 9 e08033 10.1016/j.heliyon.2021.e08033 34611564
    [Google Scholar]
  37. Khane Y. Benouis K. Albukhaty S. Green synthesis of silver nanoparticles using aqueous Citrus limon zest extract: Characterization and evaluation of their antioxidant and antimicrobial properties. Nanomaterials 2022 12 12 2013 10.3390/nano12122013 35745352
    [Google Scholar]
  38. Widatalla H.A. Yassin L.F. Alrasheid A.A. Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Adv. 2022 4 3 911 915 10.1039/D1NA00509J 36131825
    [Google Scholar]
  39. Reddy N.V. Li H. Hou T. Bethu M.S. Ren Z. Zhang Z. Phytosynthesis of silver nanoparticles using Perilla frutescens leaf extract: Characterization and evaluation of antibacterial, antioxidant, and anticancer activities. Int. J. Nanomed 2021 16 15 29 10.2147/IJN.S265003 33447027
    [Google Scholar]
  40. Tasca F. Antiochia R. Biocide activity of green quercetin-mediated synthesized silver nanoparticles. Nanomaterials 2020 10 5 909 10.3390/nano10050909 32397267
    [Google Scholar]
  41. Habeeb R.H.B. Dhandapani R. Narayanan S. Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnol. 2022 16 4 115 144 10.1049/nbt2.12078 35426251
    [Google Scholar]
  42. Ezeador CO Ejikeugwu PC Ushie SN Agbakoba NR Isolation, identification and prevalence of pseudomonas aeruginosa isolates from clinical and environmental sources in Onitsha Metropolis, Anambra State. Eu J Med Health Sci 2020 2 2 10.24018/ejmed.2020.2.2.188
    [Google Scholar]
  43. Jamil S. Khan R.A. Afroz S. Ahmed S. Phytochemistry, Brine shrimp lethality and mice acute oral toxicity studies on seed extracts of Vernonia anthelmintica. Pak. J. Pharm. Sci. 2016 29 6 2053 2057 28375123
    [Google Scholar]
  44. Waghulde S. Kale M.K. Patil V. Brine shrimp lethality assay of the aqueous and ethanolic extracts of the selected species of medicinal plants. Proceedings 2019 41 1 47
    [Google Scholar]
  45. Thangavelu S. Dhandapani R. Arulprakasam A. Isolation, identification, characterization, and plasmid profile of urinary tract infectious Escherichia coli from clinical samples. Evid. Based Complement. Alternat. Med. 2022 2022 7234586 10.1155/2022/7234586 35356239
    [Google Scholar]
  46. Adhikari B. Kwon Y.M. Cell density alters bacterial community structure in culture-enriched 16S rRNA gene microbiota profiling. BMC Res. Notes 2020 13 1 269 10.1186/s13104‑020‑05113‑2 32493423
    [Google Scholar]
  47. Yao H. Liu J. Jiang X. Chen F. Lu X. Zhang J. Analysis of the clinical effect of combined drug susceptibility to guide medication for carbapenem-resistant Klebsiella pneumoniae patients based on the kirby–bauer disk diffusion method. Infect. Drug Resist. 2021 14 79 87 10.2147/IDR.S282386 33469322
    [Google Scholar]
  48. Weinstein M.P. Lewis J.S. The clinical and laboratory standards Institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J. Clin. Microbiol. 2020 58 3 e01864 e19 10.1128/JCM.01864‑19 31915289
    [Google Scholar]
  49. Dash C. J Payyappilli R. KOH string and Vancomycin susceptibility test as an alternative method to Gram staining. J Int Med Dent 2016 3 2 88 90 10.18320/JIMD/201603.0288
    [Google Scholar]
  50. Chavan D Khatoon H Anokhe A Kalia V. Oxidase test: A biochemical method in bacterial identification. AgriCos e-Newslett 2022 3 31 3
    [Google Scholar]
  51. Diwakar M.K. Goyal A. Goyal S. Resistance pattern of methicillin resistant Staphylococcus aureus among nasal isolates of HIV infected patients in a tertiary care hospital. Int J Res Med Sci 2019 7 2 428 433 10.18203/2320‑6012.ijrms20190347
    [Google Scholar]
  52. Bhutia M.O. Thapa N. Tamang J.P. Molecular Characterization of bacteria, detection of enterotoxin genes, and screening of antibiotic susceptibility patterns in traditionally processed meat products of Sikkim, India. Front. Microbiol. 2021 11 599606 10.3389/fmicb.2020.599606 33505372
    [Google Scholar]
  53. Islam F. Roy N. Screening, purification and characterization of cellulase from cellulase producing bacteria in molasses. BMC Res. Notes 2018 11 1 445 10.1186/s13104‑018‑3558‑4 29973263
    [Google Scholar]
  54. Hall B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013 30 5 1229 1235 10.1093/molbev/mst012 23486614
    [Google Scholar]
  55. Vazouras K. Velali K. Tassiou I. Antibiotic treatment and antimicrobial resistance in children with urinary tract infections. J. Glob. Antimicrob. Resist. 2020 20 4 10 10.1016/j.jgar.2019.06.016 31252156
    [Google Scholar]
  56. Irfan M. Munir H. Ismail H. Moringa oleifera gum based silver and zinc oxide nanoparticles: green synthesis, characterization and their antibacterial potential against MRSA. Biomater. Res. 2021 25 1 17 10.1186/s40824‑021‑00219‑5 33964968
    [Google Scholar]
  57. Shameli K. Ahmad M.B. Jazayeri S.D. Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem. Cent. J. 2012 6 1 73 10.1186/1752‑153X‑6‑73 22839208
    [Google Scholar]
  58. Rafique M. Sadaf I. Tahir M.B. Novel and facile synthesis of silver nanoparticles using Albizia procera leaf extract for dye degradation and antibacterial applications. Mater. Sci. Eng. C 2019 99 1313 1324 10.1016/j.msec.2019.02.059 30889666
    [Google Scholar]
  59. Niluxsshun M.C.D. Masilamani K. Mathiventhan U. Green synthesis of silver nanoparticles from the extracts of fruit peel of citrus tangerina, Citrus sinensis, and citrus limon for antibacterial activities. Bioinorg. Chem. Appl. 2021 2021 1 8 10.1155/2021/6695734 33623527
    [Google Scholar]
  60. Bhat M. Chakraborty B. Kumar R.S. Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. J. King Saud Univ. Sci. 2021 33 2 101296 10.1016/j.jksus.2020.101296
    [Google Scholar]
  61. Li P.J. Pan J.J. Tao L.J. Green synthesis of silver nanoparticles by extracellular extracts from Aspergillus japonicus PJ01. Molecules 2021 26 15 4479 10.3390/molecules26154479 34361632
    [Google Scholar]
  62. Aygün A. Özdemir S. Gülcan M. Yalçın M.S. Uçar M. Şen F. Characterization and antioxidant-antimicrobial activity of silver nanoparticles synthesized using Punica granatum extract. Int. J. Environ. Sci. Technol. 2022 19 4 2781 2788 10.1007/s13762‑021‑03246‑w
    [Google Scholar]
  63. Pungle R. Nile S.H. Makwana N. Singh R. Singh R.P. Kharat A.S. Green synthesis of silver nanoparticles using the Tridax procumbens plant extract and screening of its antimicrobial and anticancer activities. Oxid. Med. Cell. Longev. 2022 2022 1 14 10.1155/2022/9671594 35795854
    [Google Scholar]
  64. Swilam N. Nematallah K.A. Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Sci. Rep. 2020 10 1 14851 10.1038/s41598‑020‑71847‑5 32908245
    [Google Scholar]
  65. Kumar M. Ranjan R. Sinha M. Impact of aqueous leaf extract of Punica granatum and synthesized silver nanoparticles against streptozotocin induced diabetes in rats. SSRN 2024 10.5772/intechopen.1003780
    [Google Scholar]
  66. Aksono E.B. Latifah A.C. Suwanti L.T. Haq K.U. Pertiwi H. Clove flower extract (Syzygium aromaticum) has anticancer potential effect analyzed by molecular docking and brine shrimp lethality test (BSLT). Vet. Med. Int. 2022 2022 1 7 10.1155/2022/5113742 36106174
    [Google Scholar]
  67. Rodríguez-Medina N. Barrios-Camacho H. Duran-Bedolla J. Garza-Ramos U. Klebsiella variicola: An emerging pathogen in humans. Emerg. Microbes Infect. 2019 8 1 973 988 10.1080/22221751.2019.1634981 31259664
    [Google Scholar]
  68. Pang B. Yu H. Zhang J. Ye F. Wu H. Shang C. Identification of differentially expressed genes for Pseudomonas sp. Cr13 stimulated by hexavalent chromium. PLoS One 2022 17 8 e0272528 10.1371/journal.pone.0272528 35930609
    [Google Scholar]
  69. Ull C. Yilmaz E. Baecker H. Schildhauer T. Waydhas C. Hamsen U. Microbial findings and the role of difficult-to-treat pathogens in patients with periprosthetic infection admitted to the intensive care unit. Orthop. Rev. 2020 12 3 8867 10.4081/or.2020.8867 33312492
    [Google Scholar]
  70. Periakaruppan R. Praveena M.S. Priya C. Ranjitha P. Raj G.S. Danaraj J. Biosynthesis of silica nanoparticles using the leaf extract of Punica granatum and assessment of its antibacterial activities against human pathogens. Appl. Biochem. Biotechnol. 2022 194 11 5594 5605 10.1007/s12010‑022‑03994‑6 35679016
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344386982250826062715
Loading
/content/journals/raaidd/10.2174/0127724344386982250826062715
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test