Skip to content
2000
image of Deciphering the Translational Strategies of Nanotechnology in Bacterial Conjunctivitis: Looking Ahead

Abstract

Bacterial conjunctivitis is a common eye infection caused by bacteria, posing significant treatment challenges due to rising antibiotic resistance and the limitations of traditional therapies. Standard treatments, including topical antibiotics, often suffer from issues such as poor bioavailability, limited effectiveness, and patient adherence. Nanotechnology offers an innovative approach, providing potential solutions for more effective drug delivery, diagnostics, and therapeutic interventions.

The objective of this study is to explore the role of nanotechnology in improving the management of bacterial conjunctivitis. Specifically, it examines how nanostructured drug carriers, such as nanoparticles, nanogels, and liposomes, can enhance ocular drug delivery and therapeutic outcomes. A key focus is on the influence of the hydrodynamic radius (Rh) in optimizing stability, solubility, and bioavailability.

Nanotechnology has shown promise in improving the delivery of drugs for bacterial conjunctivitis by enhancing ocular penetration and prolonging the release of active agents. The hydrodynamic radius (Rh) of nanoparticles plays a critical role in stabilizing the colloidal structure of the formulation, preventing aggregation and sedimentation. Furthermore, optimizing Rh can increase the surface area-to-volume ratio, which is beneficial for improving the solubility of poorly soluble drugs, thereby enhancing their bioavailability. Nanotechnology-based systems can also enable the development of diagnostic tools, such as nanosensors, capable of quickly and accurately detecting bacterial pathogens, facilitating timely, targeted treatments and reducing unnecessary use of broad-spectrum antibiotics. The precise control of nanoparticle Rh enhances drug stability, bioavailability, and sustained release, ultimately improving patient compliance and therapeutic efficacy.

The future of bacterial conjunctivitis treatment is promising, with further research focused on optimizing nanoparticle characteristics such as size, surface modification, and targeted drug delivery. However, challenges remain, particularly concerning the safety of nanoparticles, including potential risks to ocular tissues and long-term effects. Continued research, including and studies as well as clinical trials, is essential to establish the safety and clinical viability of these nanotechnology-based systems. With further advancements, nanotechnology could revolutionize treatment strategies for bacterial conjunctivitis, offering more targeted, patient-centered, and effective solutions for managing ocular infections and combating antibiotic resistance.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344379172251005210842
2025-10-22
2025-12-06
Loading full text...

Full text loading...

References

  1. Rose P. Management strategies for acute infective conjunctivitis in primary care: A systematic review. Expert Opin. Pharmacother. 2007 8 12 1903 1921 10.1517/14656566.8.12.1903 17696792
    [Google Scholar]
  2. Suri S.S. Fenniri H. Singh B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007 2 1 16 10.1186/1745‑6673‑2‑16 18053152
    [Google Scholar]
  3. Conrady C.D. Yeh S. A review of ocular drug delivery platforms and drugs for infectious and noninfectious uveitis: The past, present, and future. Pharmaceutics 2021 13 8 1224 10.3390/pharmaceutics13081224 34452185
    [Google Scholar]
  4. Achouri D. Alhanout K. Piccerelle P. Andrieu V. Recent advances in ocular drug delivery. Drug Dev. Ind. Pharm. 2013 39 11 1599 1617 10.3109/03639045.2012.736515 23153114
    [Google Scholar]
  5. Patra J.K. Das G. Fraceto L.F. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology 2018 16 1 71 10.1186/s12951‑018‑0392‑8 30231877
    [Google Scholar]
  6. Rai M. Ingle A.P. Gaikwad S. Padovani F.H. Alves M. The role of nanotechnology in control of human diseases: perspectives in ocular surface diseases. Crit. Rev. Biotechnol. 2016 36 5 777 787 10.3109/07388551.2015.1036002 26189355
    [Google Scholar]
  7. Lin T.C. Hung K.H. Peng C.H. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration. J. Chin. Med. Assoc. 2015 78 11 635 641 10.1016/j.jcma.2015.07.008 26383186
    [Google Scholar]
  8. Ritu Verma R Kaushik S Hesperetin-supplemented soybean and ginger hydroalcoholic extracts alleviate diabetic cardiomyopathy in streptozotocin induced diabetic rats by modulating NF-κB/MMP-9/TIMPs pathway. S. Afr. J. Bot. 2025 179 11 21 10.1016/j.sajb.2025.01.040
    [Google Scholar]
  9. Bairagi R.D. Reon R.R. Hasan M.M. Ocular drug delivery systems based on nanotechnology: a comprehensive review for the treatment of eye diseases. Discov. Nano 2025 20 1 75 10.1186/s11671‑025‑04234‑6 40317427
    [Google Scholar]
  10. Ahmed S. Amin M.M. Sayed S. Ocular drug delivery: a comprehensive review. AAPS PharmSciTech 2023 24 2 66 10.1208/s12249‑023‑02516‑9 36788150
    [Google Scholar]
  11. Singh CP Rai PK Kumar M Emphasis on nanostructured lipid carriers in the ocular delivery of antibiotics. pharm nanotechnol 2024 12 2 126 142 10.2174/2211738511666230727102213 37519002
    [Google Scholar]
  12. Ghafoorianfar S. Ghorani-Azam A. Mohajeri S.A. Farzin D. Efficiency of nanoparticles for treatment of ocular infections: Systematic literature review. J. Drug Deliv. Sci. Technol. 2020 57 101765 10.1016/j.jddst.2020.101765
    [Google Scholar]
  13. Mittal N. Kaur G. Investigations on polymeric nanoparticles for ocular delivery. Adv. Polym. Technol. 2019 2019 1 1 14 10.1155/2019/1316249
    [Google Scholar]
  14. López-Cano J.J. González-Cela-Casamayor M.A. Andrés-Guerrero V. Herrero-Vanrell R. Molina-Martínez I.T. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin. Drug Deliv. 2021 18 7 819 847 10.1080/17425247.2021.1872542 33412914
    [Google Scholar]
  15. Fan W. Han H. Chen Y. Antimicrobial nanomedicine for ocular bacterial and fungal infection. Drug Deliv. Transl. Res. 2021 11 4 1352 1375 10.1007/s13346‑021‑00966‑x 33840082
    [Google Scholar]
  16. Mainardes R. Silva L. Drug delivery systems: past, present, and future. Curr. Drug Targets 2004 5 5 449 455 10.2174/1389450043345407 15216911
    [Google Scholar]
  17. Mall J. Naseem N. Haider M.F. Rahman M.A. Khan S. Siddiqui S.N. Nanostructured lipid carriers as a drug delivery system: A comprehensive review with therapeutic applications. Intel. Pharm. 2025 3 4 243 255 10.1016/j.ipha.2024.09.005
    [Google Scholar]
  18. Liu L.C. Chen Y.H. Lu D.W. Overview of recent advances in nano-based ocular drug delivery. Int. J. Mol. Sci. 2023 24 20 15352 10.3390/ijms242015352 37895032
    [Google Scholar]
  19. Paliwal R. Paliwal S.R. Kenwat R. Kurmi B.D. Sahu M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020 30 3 179 10.1080/13543776.2020.1720649
    [Google Scholar]
  20. Sahoo S.K. Parveen S. Panda J. The present and future of nanomedicine in ocular drug delivery. Ophthalmic Res. 2019 62 4 137 145 10.1016/j.nano.2006.11.008 17379166
    [Google Scholar]
  21. Chisari G. Reibaldi M. Ciprofloxacin as treatment for conjunctivitis. J. Chemother. 2004 16 2 156 159 10.1179/joc.2004.16.2.156 15216950
    [Google Scholar]
  22. Sheikh A. Hurwitz B. van Schayck C.P. McLean S. Nurmatov U. Antibiotics versus placebo for acute bacterial conjunctivitis. Cochrane Database Syst. Rev. 2012 12 CD001211 10.1002/14651858.CD001211.pub3
    [Google Scholar]
  23. Yabiku S.T. Yabiku M.M. Bottós K.M. Araújo A.L. Freitas Dd, Belfort R Jr. Uso de ganciclovir 0,15% gel para tratamento de ceratoconjuntivite adenoviral.[Ganciclovir 0.15% ophthalmic gel in the treatment of adenovirus keratoconjunctivitis] Arq. Bras. Oftalmol. 2011
    [Google Scholar]
  24. Jhanji V. Chan T.C.Y. Li E.Y.M. Agarwal K. Vajpayee R.B. Adenoviral keratoconjunctivitis. Surv. Ophthalmol. 2015 60 5 435 443 10.1016/j.survophthal.2015.04.001 26077630
    [Google Scholar]
  25. Lichtenstein S.J. Abelson M.B. Pharmacology, clinical efficacy and safety of olopatadine hydrochloride. Expert Rev. Clin. Immunol. 2006 2 3 341 351 10.1586/1744666X.2.3.341 20476906
    [Google Scholar]
  26. Leske M. Wu S.Y. Hyman L. Hennis A. Nemesure B. Schachat A.P. Four-year incidence of macular changes in the Barbados Eye Studies*1. Ophthalmology 2004 111 4 706 711 10.1016/j.ophtha.2003.07.003 15051202
    [Google Scholar]
  27. Kruger C.J. Ehlers W.H. Luistro A.E. Donshik P.C. Treatment of giant papillary conjunctivitis with cromolyn sodium. CLAO J. 1992 18 1 46 48 [PMID: 1559288
    [Google Scholar]
  28. Greiner J.V. Michaelson C. McWhirter C.L. Shams N.B.K. Single dose of ketotifen fumarate. 025% vs 2 weeks of cromolyn sodium 4% for allergic conjunctivitis. Adv. Ther. 2002 19 4 185 193 10.1007/BF02848694 12431044
    [Google Scholar]
  29. Chen Y-M. Hu F-R. Hou Y-C. Effect of oral azithromycin in the treatment of chlamydial conjunctivitis. Eye (Lond.) 2010 24 6 985 989 10.1038/eye.2009.264 19893589
    [Google Scholar]
  30. Zikic A. Schünemann H. Wi T. Lincetto O. Broutet N. Santesso N. Treatment of neonatal chlamydial conjunctivitis: A Systematic review and meta-analysis. J. Pediatric Infect. Dis. Soc. 2018 7 3 e107 e115 10.1093/jpids/piy060 30007329
    [Google Scholar]
  31. Qiu S. Zhao G.Q. Lin J. Natamycin in the treatment of fungal keratitis: a systematic review and meta-analysis. Int. J. Ophthalmol. 2015 8 3 597 602 10.3980/j.issn.2222‑3959.2015.03.29 26086015
    [Google Scholar]
  32. Thomas P.A. Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin. Microbiol. Infect. 2013 19 3 210 220 10.1111/1469‑0691.12126 23398543
    [Google Scholar]
  33. Leung A.K.C. Hon K.L. Wong A.H.C. Wong A.S. Bacterial conjunctivitis in childhood: etiology, clinical manifestations, diagnosis, and management. Recent Pat. Inflamm. Allergy Drug Discov. 2018 12 2 120 127 10.2174/1872213X12666180129165718 29380707
    [Google Scholar]
  34. Azari A.A. Arabi A. Conjunctivitis: A systematic review. J. Ophthalmic Vis. Res. 2020 15 3 372 395 10.18502/jovr.v15i3.7456 32864068
    [Google Scholar]
  35. Milman T. Pathology of the Conjunctiva. Albert and Jakobiec’s Principles and Practice of Ophthalmology. Springer 2021 1 43 10.1007/978‑3‑319‑90495‑5_128‑1
    [Google Scholar]
  36. Bhat A. Jhanji V. Bacterial conjunctivitis. Infections of the Cornea and Conjunctiva. Springer 2020 10.1007/978‑981‑15‑8811‑2_1
    [Google Scholar]
  37. Smith C.H. Bacteriology of the healthy conjunctiva. Br. J. Ophthalmol. 1954 38 12 719 726 10.1136/bjo.38.12.719 13219250
    [Google Scholar]
  38. Thanathanee O. O’Brien T.P. Conjunctivitis: Systematic approach to diagnosis and therapy. Curr. Infect. Dis. Rep. 2011 13 2 141 148 10.1007/s11908‑011‑0167‑y 21365377
    [Google Scholar]
  39. Ali T.K. Pantanelli S.M. Conjunctivitis. The Infected Eye: Clinical Practice and Pathological Principles. Springer 2016 57 75 10.1007/978‑3‑319‑42840‑6_4
    [Google Scholar]
  40. Dumitrache M. Ophthalmological Pathology of the Eye: Conjunctiva. In: Dumitrache M, Ed. Clinical Ophthalmology Dumitrache M. Cham Springer 2024 10.1007/978‑3‑031‑68453‑1_5
    [Google Scholar]
  41. Teweldemedhin M. Gebreyesus H. Atsbaha A.H. Asgedom S.W. Saravanan M. Bacterial profile of ocular infections: a systematic review. BMC Ophthalmol. 2017 17 1 212 10.1186/s12886‑017‑0612‑2 29178851
    [Google Scholar]
  42. Gin C. Crock C. Wells K. Conjunctivitis: A review. Aust. J. Gen. Pract. 2024 53 11 847 852 10.31128/AJGP‑09‑23‑6960 39499843
    [Google Scholar]
  43. Verma R. Bhatia M. Mojumder M. A review on ocular nanoformulation based formulations with highlights on pediatric ocular pharmacokinetics. Pharm. Nanotechnol. 2024 13 10.2174/0122117385307184240826041920 39328131
    [Google Scholar]
  44. Alzahrani N.M. Booq R.Y. Aldossary A.M. Liposome-Kd tobramycin and IDR-1018 peptide mediated biofilm disruption and enhanced antimicrobial activity against Pseudomonas aeruginosa. Pharmaceutics 2022 14 5 960 10.3390/pharmaceutics14050960 35631547
    [Google Scholar]
  45. Jacinto T.A. Oliveira B. Miguel S.P. Ribeiro M.P. Coutinho P. Ciprofloxacin-loaded zein/hyaluronic acid nanoparticles for ocular mucosa delivery. Pharmaceutics 2022 14 8 1557 10.3390/pharmaceutics14081557 35893813
    [Google Scholar]
  46. Mikušová V. Mikuš P. Advances in chitosan-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2021 22 17 9652 10.3390/ijms22179652 34502560
    [Google Scholar]
  47. Taghe S. Mirzaeei S. Alany R.G. Nokhodchi A. Polymeric inserts containing Eudragit® L100 nanoparticle for improved ocular delivery of azithromycin. Biomedicines 2020 8 11 466 10.3390/biomedicines8110466 33142768
    [Google Scholar]
  48. Chomchalao P. Saelim N. Lamlertthon S. Sisopa P. Tiyaboonchai W. A potential thermosensitive poloxamer 407-based in situ hydrogel containing moxifloxacin-loaded silk fibroin nanoparticles for prolonged ocular delivery. J. Drug Deliv. Sci. Technol. 2024 99 105988 10.1016/j.jddst.2024.105988
    [Google Scholar]
  49. Ahsan A. Barnes T.J. Thomas N. Subramaniam S. Prestidge C.A. Lipid-based nanocarriers for enhanced gentamicin delivery: a comparative study of liquid crystal nanoparticles and liposomes against Escherichia coli biofilms. Drug Deliv. Transl. Res. 2025 15 11 4004 4025 10.1007/s13346‑025‑01890‑0 40504351
    [Google Scholar]
  50. Khiev D. Mohamed Z.A. Vichare R. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials 2021 11 1 173 10.3390/nano11010173 33445545
    [Google Scholar]
  51. Charoenchokpanich W. Muangrod P. Roytrakul S. Exploring the model of cefazolin released from jellyfish gelatin-based hydrogels as affected by glutaraldehyde. Gels 2024 10 4 271 10.3390/gels10040271 38667690
    [Google Scholar]
  52. Al Qushawi A.A. Al-Ruaby K.J. Antibacterial activity study of erythromycin-loaded chitosan nanoparticles and chitosan nanoparticle against identified MRSA and MSSA bacteria isolated from mastitis cow milk. EurAsiatic J Biosci 2020 14 2 7397 7405
    [Google Scholar]
  53. Ashour A.A. Felemban N.H. Enan E.T. Basha S. Gad El-Rab S.M.F. The antimicrobial and synergistic strategies of erythromycin combined synthesized chitosan-silver and chitosan-zinc oxide nanodrug on oral bacteria. J. Biobased Mater. Bioenergy 2022 16 3 408 417 10.1166/jbmb.2022.2199
    [Google Scholar]
  54. Akhter M.H. Ahmad I. Alshahrani M.Y. Drug delivery challenges and current progress in nanocarrier-based ocular therapeutic system. Gels 2022 8 2 82 10.3390/gels8020082 35200463
    [Google Scholar]
  55. Amrutkar C.S. Patil S.B. Nanocarriers for ocular drug delivery: Recent advances and future opportunities. Indian J. Ophthalmol. 2023 71 6 2355 2366 10.4103/ijo.IJO_1893_22 37322644
    [Google Scholar]
  56. Duxfield L. Sultana R. Wang R. Development of gatifloxacin-loaded cationic polymeric nanoparticles for ocular drug delivery. Pharm. Dev. Technol. 2016 21 2 172 179 10.3109/10837450.2015.1091839 26794936
    [Google Scholar]
  57. Rizvi S.A.A. Saleh A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J. 2018 26 1 64 70 10.1016/j.jsps.2017.10.012
    [Google Scholar]
  58. Al Yabhouni SA Mozumder MS Hassan N Mourad AHI Issa Md TMA Nanocarrier-based, ocular drug delivery: challenges, prospects, and the therapeutic landscape in the United Arab Emirates. Int J Pharm 2024 667 Pt B 124899 10.1016/j.ijpharm.2024.124899 39521159
    [Google Scholar]
  59. Mizushima Y. Hamano T. Yokoyama K. Tissue distribution and anti-inflammatory activity of corticosteroids incorporated in lipid emulsion. Ann. Rheum. Dis. 1982 41 3 263 267 10.1136/ard.41.3.263 6896429
    [Google Scholar]
  60. Navarro-Partida J. Castro-Castaneda C.R. Santa Cruz-Pavlovich F.J. Aceves-Franco L.A. Guy T.O. Santos A. Lipid-based nanocarriers as topical drug delivery systems for intraocular diseases. Pharmaceutics 2021 13 5 678 10.3390/pharmaceutics13050678 34065059
    [Google Scholar]
  61. Mehta S. Armstrong B.K. Kim S.J. Long-term potency, sterility, and stability of vancomycin, ceftazidime, and moxifloxacin for treatment of bacterial endophthalmitis. Retina 2011 31 7 1316 1322 10.1097/IAE.0b013e31820039af 21358364
    [Google Scholar]
  62. Li S. Chen L. Fu Y. Nanotechnology-based ocular drug delivery systems: recent advances and future prospects. J. Nanobiotechnology 2023 21 1 232 10.1186/s12951‑023‑01992‑2 37480102
    [Google Scholar]
  63. Gorantla S. Rapalli V.K. Waghule T. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Advances 2020 10 46 27835 27855 10.1039/D0RA04971A 35516960
    [Google Scholar]
  64. Wadhwa S. Paliwal R. Paliwal S. Vyas S. Nanocarriers in ocular drug delivery: an update review. Curr. Pharm. Des. 2009 15 23 2724 2750 10.2174/138161209788923886 19689343
    [Google Scholar]
  65. Liu Y.C. Lin M.T.Y. Ng A.H.C. Wong T.T. Mehta J.S. Nanotechnology for the treatment of allergic conjunctival diseases. Pharmaceuticals 2020 13 11 351 10.3390/ph13110351 33138064
    [Google Scholar]
  66. Mathur P. Verma R. Rani L. Emerging treatment options of pluronic in designing colloidal nano and micro carriers for various therapies. Recent Pat. Nanotechnol. 2025 19 3 395 406 10.2174/0118722105255391231018112747 38018214
    [Google Scholar]
  67. Mathur P. Bhatt S. Kumar S. Deciphering the therapeutic applications of nanomedicine in ovarian cancer therapy: An overview. Curr. Drug Deliv. 2024 21 9 1180 1196 10.2174/0115672018253815230922070558 37818568
    [Google Scholar]
  68. Li D. Ye Q. Li C. Trends in noninvasive ocular nanoparticle drug delivery: A bibliometric analysis (2004). Biomol. Biomed. 2023 2025 Mar 4 10.17305/bb.2025.11772 40070363
    [Google Scholar]
  69. Mahaling B. Baruah N. Dinabandhu A. Drug delivery systems for infectious eye diseases: Advancements and prospects. J. Nanotheranostics 2024 5 133 166 10.3390/jnt5040010
    [Google Scholar]
  70. Gupta B. Mishra V. Gharat S. Momin M. Omri A. Cellulosic polymers for enhancing drug bioavailability in ocular drug delivery systems. Pharmaceuticals 2021 14 11 1201 10.3390/ph14111201 34832983
    [Google Scholar]
  71. Erdal E. Aslan Altay Y. Ugurlu N. Preparation and characterization of nanoparticular systems for topical treatment of ocular infections. Hacet. J. Biol. Chem. 2020 48 1 49 58 10.15671/hjbc.552231
    [Google Scholar]
  72. Maulvi F.A. Singhania S.S. Desai A.R. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. Int. J. Pharm. 2018 548 1 139 150 10.1016/j.ijpharm.2018.06.059 29960036
    [Google Scholar]
  73. Barar J. Aghanejad A. Fathi M. Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. Bioimpacts 2016 6 1 49 67 10.15171/bi.2016.07 27340624
    [Google Scholar]
  74. Eid H.M. Naguib I.A. Alsantali R.I. Alsalahat I. Hegazy A.M. Novel chitosan-coated niosomal formulation for improved management of bacterial conjunctivitis: A highly permeable and efficient ocular nanocarrier for azithromycin. J. Pharm. Sci. 2021 110 8 3027 3036 10.1016/j.xphs.2021.04.020 33940026
    [Google Scholar]
  75. Shinde U. Barkat Y. Singh K. Coloaded surface–modified PLGA nanoparticles for sustained ocular delivery of levofloxacin and flurbiprofen. J. Pharm. Innov. 2023 18 4 2348 2361 10.1007/s12247‑023‑09796‑5
    [Google Scholar]
  76. Huang X. Li L. Chen Z. Nanomedicine for the detection and treatment of ocular bacterial infections. Adv. Mater. 2023 35 46 2302431 10.1002/adma.202302431 37231939
    [Google Scholar]
  77. Motamedi H. Ari M.M. Alvandi A. Abiri R. Principle, application and challenges of development siRNA-based therapeutics against bacterial and viral infections: A comprehensive review. Front. Microbiol. 2024 15 1393646 10.3389/fmicb.2024.1393646 38939184
    [Google Scholar]
  78. Pignatello R. Carbone C. Puglia C. Offerta A. Bonina F.P. Puglisi G. Ophthalmic applications of lipid-based drug nanocarriers: an update of research and patenting activity. Ther. Deliv. 2015 6 11 1297 1318 10.4155/tde.15.73 26608630
    [Google Scholar]
  79. Dzięgielewska M. Tomczyk M. Wiater A. Woytoń A. Junka A. Targeting ocular biofilms with plant-derived antimicrobials in the era of antibiotic resistance. Molecules 2025 30 13 2863 10.3390/molecules30132863 40649377
    [Google Scholar]
  80. Padaga S.G. Bhatt H.Ch.S. Glycol chitosan-poly (lactic acid) conjugate nanoparticles encapsulating ciprofloxacin: A mucoadhesive, antiquorum-sensing, and biofilm-disrupting treatment modality for bacterial keratitis. ACS Appl. Mater. Interfaces 2024 16 15 18360 18385 10.1021/acsami.3c18061 38573741
    [Google Scholar]
  81. Joshi P.H. Youssef A.A.A. Ghonge M. Gatifloxacin loaded nano lipid carriers for the management of bacterial conjunctivitis. Antibiotics 2023 12 8 1318 10.3390/antibiotics12081318 37627738
    [Google Scholar]
  82. Youssef A.A.A. Cai C. Dudhipala N. Majumdar S. Design of topical ocular ciprofloxacin nanoemulsion for the management of bacterial keratitis. Pharmaceuticals 2021 14 3 210 10.3390/ph14030210 33802394
    [Google Scholar]
  83. Farkas E. Abboud H. Nagy N. Formulation and development of nanofiber-based ophthalmic insert for the treatment of bacterial conjunctivitis. Int. J. Mol. Sci. 2024 25 17 9228 10.3390/ijms25179228 39273175
    [Google Scholar]
  84. Abbas M.N. Khan S.A. Sadozai S.K. Nanoparticles loaded thermoresponsive in situ gel for ocular antibiotic delivery against bacterial keratitis. Polymers 2022 14 6 1135 10.3390/polym14061135 35335465
    [Google Scholar]
  85. Nguyen D.D. Lai J.Y. Advancing the stimuli response of polymer-based drug delivery systems for ocular disease treatment. Polym. Chem. 2020 11 44 6988 7008 10.1039/D0PY00919A
    [Google Scholar]
  86. Pandey M Choudhury H binti Abd Aziz A Potential of stimuli-responsive in situ gel system for sustained ocular drug delivery: Recent progress and contemporary research. Polymers 2021 13 8 1340 10.3390/polym13081340 33923900
    [Google Scholar]
  87. Alruwaili N.K. Zafar A. Imam S.S. Stimulus responsive ocular gentamycin-ferrying chitosan nanoparticles hydrogel: Formulation optimization, ocular safety and antibacterial assessment. Int. J. Nanomedicine 2020 15 4717 4737 10.2147/IJN.S254763 32636627
    [Google Scholar]
  88. Shaeri M. Nazari-Alam A. Fathizadeh H. Bacterial etiology and antibiotic susceptibility of conjunctivitis patients’ isolates in Kashan, Iran. Adv. Biomed. Res. 2020 9 1 49 10.4103/abr.abr_118_20 33457332
    [Google Scholar]
  89. Patel G.C. Parmar V.K. Patel P.S. Stimuli-responsive polymers for ocular therapy. Stimuli Responsive Polymeric Nanocarriers for Drug Delivery Applications. Cambridge Woodhead Publishing 2019 463 489 10.1016/B978‑0‑08‑101995‑5.00023‑4
    [Google Scholar]
  90. Farswan A. Singh M.F. Dhasmana A. Bahuguna V. Kumar G. Jadon V.S. Enhancing diagnosis and management of conjunctivitis: innovations and evidence-based strategies. Proceedings of the 2024 International Conference on Healthcare Innovations, Software and Engineering Technologies (HISET) 2024 Karad, Maharashtra, India 160 164 10.1109/HISET61796.2024.00056
    [Google Scholar]
  91. Kowalski R.P. Dhaliwal D.K. Ocular bacterial infections: Current and future treatment options. Expert Rev. Anti Infect. Ther. 2005 3 1 131 139 10.1586/14787210.3.1.131 15757463
    [Google Scholar]
  92. Bertino J.S. Impact of antibiotic resistance in the management of ocular infections: the role of current and future antibiotics. Clin. Ophthalmol. 2009 3 507 521 10.2147/OPTH.S5778 19789660
    [Google Scholar]
  93. Fu L. Wasielica-Poslednik J. Geerling G. Navigating the challenges of acanthamoeba keratitis: Current trends and future directions. Life 2025 15 6 933 10.3390/life15060933 40566585
    [Google Scholar]
  94. Origlieri C. Bielory L. Emerging drugs for conjunctivitis. Expert Opin. Emerg. Drugs 2009 14 3 523 536 10.1517/14728210903103818 19708819
    [Google Scholar]
  95. Alfonso E. Crider J. Ophthalmic infections and their anti-infective challenges. Surv. Ophthalmol. 2005 50 6 S1 S6 10.1016/j.survophthal.2005.05.001 16257307
    [Google Scholar]
  96. Modi C. Gadhvi V. Prajapati B.G. Envisioning the future: Nanomicelles revolutionizing ocular drug delivery. Pharm. Nanotechnol. 2025 13 3 528 542 10.2174/0122117385286925240221111601 38465435
    [Google Scholar]
  97. Das B. Nayak A.K. Mallick S. Lipid-based nanocarriers for ocular drug delivery: An updated review. J. Drug Deliv. Sci. Technol. 2022 76 103780 10.1016/j.jddst.2022.103780
    [Google Scholar]
  98. Mossburg S. Agore A. Nkimbeng M. Commodore-Mensah Y. Occupational hazards among healthcare workers in Africa: A systematic review. Ann. Glob. Health 2019 85 1 78 10.5334/aogh.2434 31172728
    [Google Scholar]
  99. Sultana Y. Maurya D.P. Iqbal Z. Aqil M. Nanotechnology in ocular delivery: Current and future directions. Drugs Today (Barc) 2011 47 6 441 455 10.1358/dot.2011.47.6.1549023
    [Google Scholar]
  100. Kannan R.M. Xu Q. Kambhampati S.P. Nanotechnology approaches for ocular drug delivery. Middle East Afr. J. Ophthalmol. 2013 20 1 26 37 10.4103/0974‑9233.106384 23580849
    [Google Scholar]
  101. Bachu R. Chowdhury P. Al-Saedi Z. Karla P. Boddu S. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics 2018 10 1 28 10.3390/pharmaceutics10010028 29495528
    [Google Scholar]
  102. Ashique S. Kumar P. Taj T. Nanotechnology: A state of the art for the management of ocular disorders—a roadmap. Bionanoscience 2025 15 2 285 10.1007/s12668‑025‑01895‑6
    [Google Scholar]
  103. Lin X. Zhou Y. Lv K. Wu W. Chen C. Nanomedicine-based ophthalmic drug delivery systems for the treatment of ocular diseases. Int. J. Nanomedicine 2025 20 9221 9249 10.2147/IJN.S532074 40718639
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344379172251005210842
Loading
/content/journals/raaidd/10.2174/0127724344379172251005210842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test