Skip to content
2000
image of Exploring the Therapeutic Potential of Panax Ginseng: A Comprehensive Review of Its Pharmacological Applications

Abstract

has long been revered in traditional medicine for its various health benefits, pharmacological activities, and therapeutic potential. is rich in bioactive compounds, primarily ginsenosides, as well as diverse metabolites, including flavonoids, terpenes, saponins, amino acids, and polysaccharides, which contribute to its therapeutic properties. Ginsenosides are categorized into dammarane and oleanane groups, with at least 289 ginsenosides identified across different Panax species. Moreover, the extraction method and solvent used significantly influence the composition and bioactivity of ginseng extracts, with ethanol and water extracts showing promising antioxidant and immunostimulatory effects. Clinical and preclinical studies have demonstrated efficacy in enhancing mental functioning and immune response, while also showing promise in protection from liver damage, osteoporosis, and hyperlipidemia. Additionally, exhibits antimicrobial and antiviral activities, making it a valuable natural resource in combating infectious diseases. Ginsenosides exhibit anti-inflammatory properties by inhibiting NF-κB activation and proinflammatory cytokine production, while also enhancing the function of immune cells. Furthermore, ginsenosides regulate lipid metabolism, promote glucose uptake, and modulate insulin sensitivity, contributing to their anti-diabetic properties. Additionally, demonstrates anti-oncogenic activity by inducing programmed cell death, inhibiting angiogenesis, and suppressing tumor growth in various cancer types. exhibits neuroprotective effects across various neurological disorders, including Parkinson’s disease, Alzheimer’s disease, Huntington's disease, multiple sclerosis, and major depressive disorder. Its mechanisms of action involve mitigating cell death, reducing oxidative stress, inhibiting apoptosis, modulating neurotransmitter levels, and regulating inflammatory responses. Importantly, has low acute and subacute oral toxicity, further supporting its safety profile for human consumption. In conclusion, emerges as a versatile herbal remedy with significant therapeutic implications across a wide range of health conditions.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344376497251007045815
2025-10-30
2025-12-06
Loading full text...

Full text loading...

References

  1. Kiefer D. Pantuso T. Panax ginseng. Am. Fam. Physician 2003 68 8 1539 1542 14596440
    [Google Scholar]
  2. Freeman P. Tyler’s Herbs of Choice - The Therapeutic Use of Phytomedicinals. J. E. Robbers and V. E. Tyler. New York, NY: Haworth Herbal Press. 2000. US$24.00. ISBN 0-7890- 0160-8. Br. J. Nutr. 2000 84 4 583 3 10.1017/S0007114500001902
    [Google Scholar]
  3. Blumenthal M. Trade organizations, court, and government actions affect the herbal industry. HerbalGram 2002 54 62
    [Google Scholar]
  4. Potenza M.A. Montagnani M. Santacroce L. Charitos I.A. Bottalico L. Ancient herbal therapy: A brief history of Panax ginseng. J. Ginseng Res. 2023 47 3 359 365 10.1016/j.jgr.2022.03.004 37252279
    [Google Scholar]
  5. Cho C.W. Kim Y.C. Rhee Y.K. Lee Y.C. Kim K.T. Hong H.D. Chemical composition characteristics of Korean straight ginseng products. J Ethnic Foods 2014 1 1 24 28 10.1016/j.jef.2014.11.007
    [Google Scholar]
  6. Chen X. Zhou H. Liu Y.B. Database of traditional Chinese medicine and its application to studies of mechanism and to prescription validation. Br. J. Pharmacol. 2006 149 8 1092 1103 10.1038/sj.bjp.0706945 17088869
    [Google Scholar]
  7. Wang H. Xu F. Wang X. Kwon W.S. Yang D.C. Molecular discrimination of Panax ginseng cultivar K-1 using pathogenesis-related protein 5 gene. J. Ginseng Res. 2019 43 3 482 487 10.1016/j.jgr.2018.07.001 31308820
    [Google Scholar]
  8. Zhang H. Abid S. Ahn J.C. Characteristics of Panax ginseng cultivars in Korea and China. Molecules 2020 25 11 2635 10.3390/molecules25112635 32517049
    [Google Scholar]
  9. Goldstein B. Ginseng: Its history, dispersion, and folk tradition. Am. J. Chin. Med. 1975 3 3 223 234 10.1142/S0192415X75000244 1103611
    [Google Scholar]
  10. Choi K. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 2008 29 9 1109 1118 10.1111/j.1745‑7254.2008.00869.x 18718180
    [Google Scholar]
  11. Shim D. Bak Y. Choi H.G. Lee S. Park S.C. Effects of Panax species and their bioactive components on allergic airway diseases. J. Ginseng Res. 2024 48 4 354 365 10.1016/j.jgr.2024.04.003 39036733
    [Google Scholar]
  12. Lee S.M. Bae B.S. Park H.W. Characterization of Korean Red Ginseng (Panax ginseng Meyer): History, preparation method, and chemical composition. J. Ginseng Res. 2015 39 4 384 391 10.1016/j.jgr.2015.04.009 26869832
    [Google Scholar]
  13. Nair R. Sellaturay S. Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500–2600 BCE). Indian J. Urol. 2012 28 1 15 20 10.4103/0970‑1591.94946 22557711
    [Google Scholar]
  14. Lee J.S. Choi H.S. Kang S.W. Therapeutic effect of Korean red ginseng on inflammatory cytokines in rats with focal cerebral ischemia/reperfusion injury. Am. J. Chin. Med. 2011 39 1 83 94 10.1142/S0192415X1100866X 21213400
    [Google Scholar]
  15. Ramesh T. Kim S.W. Hwang S.Y. Sohn S.H. Yoo S.K. Kim S.K. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr. Res. 2012 32 9 718 726 10.1016/j.nutres.2012.08.005 23084645
    [Google Scholar]
  16. Jang M.H. Piao X.L. Kim J.M. Kwon S.W. Park J.H. Inhibition of cholinesterase and amyloid‐ β aggregation by resveratrol oligomers from Vitis amurensis. Phytother. Res. 2008 22 4 544 549 10.1002/ptr.2406 18338769
    [Google Scholar]
  17. Jung J.H. Kang I.G. Kim D.Y. Hwang Y.J. Kim S.T. The effect of Korean red ginseng on allergic inflammation in a murine model of allergic rhinitis. J. Ginseng Res. 2013 37 2 167 175 10.5142/jgr.2013.37.167 23717169
    [Google Scholar]
  18. Rhee M.Y. Kim Y.S. Bae J.H. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J. Altern. Complement. Med. 2011 17 1 45 49 10.1089/acm.2010.0065 21235416
    [Google Scholar]
  19. Geng J. Dong J. Ni H. Ginseng for cognition. Cochrane Libr. 2010 12 CD007769 10.1002/14651858.CD007769.pub2 21154383
    [Google Scholar]
  20. Jang D.J. Lee M.S. Shin B.C. Lee Y.C. Ernst E. Red ginseng for treating erectile dysfunction: A systematic review. Br. J. Clin. Pharmacol. 2008 66 4 444 450 10.1111/j.1365‑2125.2008.03236.x 18754850
    [Google Scholar]
  21. Leung K.W. Wong A.S.T. Ginseng and male reproductive function. Spermatogenesis 2013 3 3 26391 10.4161/spmg.26391 24381805
    [Google Scholar]
  22. Yuan H.D. Kim J.T. Kim S.H. Chung S.H. Ginseng and diabetes: The evidences from in vitro, animal and human studies. J. Ginseng Res. 2012 36 1 27 39 10.5142/jgr.2012.36.1.27 23717101
    [Google Scholar]
  23. Kang J.H. Song K.H. Woo J.K. Ginsenoside Rp1 from Panax ginseng exhibits anti-cancer activity by down-regulation of the IGF-1R/Akt pathway in breast cancer cells. Plant Foods Hum. Nutr. 2011 66 3 298 305 10.1007/s11130‑011‑0242‑4 21748437
    [Google Scholar]
  24. Attele A.S. Wu J.A. Yuan C.S. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 1999 58 11 1685 1693 10.1016/S0006‑2952(99)00212‑9 10571242
    [Google Scholar]
  25. Wong A.S.T. Che C.M. Leung K.W. Recent advances in ginseng as cancer therapeutics: A functional and mechanistic overview. Nat. Prod. Rep. 2015 32 2 256 272 10.1039/C4NP00080C 25347695
    [Google Scholar]
  26. Pandey A.K. Ali M.A. Mao A.A. Genus Panax L.(Araliaceae) in India. Pleione 2007 2 46 54
    [Google Scholar]
  27. Morita T. Tanaka O. Kohda H. Saponin composition of rhizomes of Panax japonicus collected in South Kyushu, Japan, and its significance in oriental traditional medicine. Chem. Pharm. Bull. 1985 33 9 3852 3858 10.1248/cpb.33.3852 4092283
    [Google Scholar]
  28. Yamahara J. Kubomura Y. Miki K. Fujimura H. Anti-ulcer action of Panax japonicus rhizome. J. Ethnopharmacol. 1987 19 1 95 101 10.1016/0378‑8741(87)90141‑3 3586698
    [Google Scholar]
  29. Kim D.H. Chemical Diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J. Ginseng Res. 2012 36 1 1 15 10.5142/jgr.2012.36.1.1 23717099
    [Google Scholar]
  30. Sharma S.K. Pandit M.K. A new species of panax L.(Araliaceae) from Sikkim himalaya, India. Syst. Bot. 2009 34 2 434 438 10.1600/036364409788606235
    [Google Scholar]
  31. Cho I.H. Lee H.J. Kim Y.S. Differences in the volatile compositions of ginseng species (Panax sp.). J. Agric. Food Chem. 2012 60 31 7616 7622 10.1021/jf301835v 22804575
    [Google Scholar]
  32. Nguyen S.G. Long P.K. A new ginseng species Panax sp.(Araliaceae) in Vietnam. J. Pharm. 2011 426 59 63
    [Google Scholar]
  33. Dua P.R. Shanker G. Srimal R.C. Adaptogenic activity of Indian Panax pseudoginseng. Indian J. Exp. Biol. 1989 27 7 631 634 2632390
    [Google Scholar]
  34. Ali M.A. Al-Hemaid F.M. Lee J. Choudhary R.K. Pandey A.K. Al-Harbi N.A. Assessing nrDNA ITS2 sequence based molecular signature of ginseng for potential use in quality control of drug. Afr. J. Pharm. Pharmacol. 2012 6 39 2775 2781
    [Google Scholar]
  35. Jenner H. Townsend B. Osbourn A. Unravelling triterpene glycoside synthesis in plants: Phytochemistry and functional genomics join forces. Planta 2005 220 4 503 506 10.1007/s00425‑004‑1434‑z 15703926
    [Google Scholar]
  36. Kitts D.D. Hu C. Efficacy and safety of ginseng. Public Health Nutr. 2000 3 4a 473 485 10.1017/S1368980000000550 11276295
    [Google Scholar]
  37. Patel S. Rauf A. Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed. Pharmacother. 2017 85 120 127 10.1016/j.biopha.2016.11.112 27930975
    [Google Scholar]
  38. Yang W. Hu Y. Wu W. Ye M. Guo D. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry 2014 106 7 24 10.1016/j.phytochem.2014.07.012 25108743
    [Google Scholar]
  39. Kim Y.J. Zhang D. Yang D.C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol. Adv. 2015 33 6 717 735 10.1016/j.biotechadv.2015.03.001 25747290
    [Google Scholar]
  40. Liu S. Zhong J.J. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochem. 1998 33 1 69 74 10.1016/S0032‑9592(97)00064‑2
    [Google Scholar]
  41. Kochkin D.V. Kachala V.V. Shashkov A.S. Chizhov A.O. Chirva V.Y. Nosov A.M. Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens. Phytochemistry 2013 93 18 26 10.1016/j.phytochem.2013.03.021 23642388
    [Google Scholar]
  42. Sanada S. Kondo N. Shoji J. Tanaka O. Shibata S. Studies on the saponins of ginseng. I. Structures of ginsenoside-Ro,-Rb1,-Rb2,-Rc and-Rd. Chem. Pharm. Bull. 1974 22 2 421 428 10.1248/cpb.22.421
    [Google Scholar]
  43. Kitagawa I. Taniyama T. Hayashi T. Yoshikawa M. Malonyl-ginsenosides Rb1,Rb2,Rc, and Rd, four new malonylated dammarane-type triterpene oligoglyc-osides from ginseng radix. Chem. Pharm. Bull. 1983 31 9 3353 3356 10.1248/cpb.31.3353
    [Google Scholar]
  44. Ruan C.C. Liu Z. Li X. Isolation and characterization of a new ginsenoside from the fresh root of Panax ginseng. Molecules 2010 15 4 2319 2325 10.3390/molecules15042319 20428044
    [Google Scholar]
  45. Sun G. Li X. Liu Z. Wang J. Zheng Y. Yang X. Isolation and structure characterization of malonyl-notoginsenoside-R4 from the root of Panax ginseng. Chem. J. Chin. Univ. (Chin Ed) 2007 28 7 1316
    [Google Scholar]
  46. Zhu G.Y. Li Y.W. Hau D.K.P. Jiang Z.H. Yu Z.L. Fong W.F. Protopanaxatriol-type ginsenosides from the root of Panax ginseng. J. Agric. Food Chem. 2011 59 1 200 205 10.1021/jf1037932 21141994
    [Google Scholar]
  47. Kaku T. Kawashima Y. Isolation and characterization of ginsenoside-Rg2, 20R-prosapogenin, 20S-prosapogenin and delta 20-prosapogenin. Chemical studies on saponins of Panax ginseng C. A. Meyer, Third report. Arzneimittelforschung 1980 30 6 936 943 7191267
    [Google Scholar]
  48. Besso H. Kasai R. Saruwatari Y. Fuwa T. Tanaka O. Ginsenoside-Ra1 and ginsenoside-Ra2, new dammarane-saponins of ginseng roots. Chem. Pharm. Bull. 1982 30 7 2380 2385 10.1248/cpb.30.2380
    [Google Scholar]
  49. Matsuura H. Kasai R. Tanaka O. Saruwatari Y. Kunihiro K. Fuwa T. Further studies on dammarane-saponins of ginseng roots. Chem. Pharm. Bull. 1984 32 3 1188 1192 10.1248/cpb.32.1188
    [Google Scholar]
  50. Sanada S. Kondo N. Shoji J. Tanaka O. Shibata S. Studies on the saponins of ginseng. II. Structures of ginsenoside-Re, -Rf and -Rg2. Chem. Pharm. Bull. 1974 22 10 2407 2412 10.1248/cpb.22.2407
    [Google Scholar]
  51. Yahara S. Tanaka O. Komori T. Saponins of the leaves of Panax ginseng C. A. Meyer. Chem. Pharm. Bull. 1976 24 9 2204 2208 10.1248/cpb.24.2204
    [Google Scholar]
  52. Cheng Y.J. Su S.X. Ma Q.F. Pei Y.P. Xie H. Yao X.S. Studies on new minor saponins isolated from leaves of Panax ginseng C. A. Meyer. Yao Xue Xue Bao 1987 22 9 685 689 3445760
    [Google Scholar]
  53. Yoshikawa M. Sugimoto S. Nakamura S. Sakumae H. Matsuda H. Medicinal flowers. XVI. New dammarane-type triterpene tetraglycosides and gastroprotective principles from flower buds of Panax ginseng. Chem. Pharm. Bull. 2007 55 7 1034 1038 10.1248/cpb.55.1034 17603196
    [Google Scholar]
  54. Nagai Y. Tanaka O. Shibata S. Chemical studies on the oriental plant drugs—XXIV. Tetrahedron 1971 27 5 881 892 10.1016/S0040‑4020(01)92488‑3
    [Google Scholar]
  55. Sanada S. Shoji J. Studies on the saponins of ginseng. III. Structures of ginsenoside-Rb3 and 20-glucoginsenoside-Rf. Chem. Pharm. Bull. 1978 26 6 1694 1697
    [Google Scholar]
  56. Yahara S. Kaji K. Tanaka O. Further study on dammarane-type saponins of roots, leaves, flower-buds, and fruits of Panax giinseng C.A. Meyer. Chem. Pharm. Bull. 1979 27 1 88 92 10.1248/cpb.27.88
    [Google Scholar]
  57. Ru W. Wang D. Xu Y. Chemical constituents and bioactivities of Panax ginseng (C. A. Mey.). Drug Discov. Ther. 2015 9 1 23 32 10.5582/ddt.2015.01004 25788049
    [Google Scholar]
  58. Dou D.Q. Chen Y.J. Zhong-ZeMa YW. A novel minor saponin from the leaves of Panax ginseng. CA Meyer. J. Chin. Pharm. Sci. 1996 5 1 48
    [Google Scholar]
  59. Dou D. Wen Y. Pei Y. Ginsenoside-Ia: A novel minor saponin from the leaves of Panax ginseng. Planta Med. 1996 62 2 179 181 10.1055/s‑2006‑957849 17252434
    [Google Scholar]
  60. Ma H.Y. Gao H.Y. Huang J. Sun B. Yang B. Three new triterpenoids from Panax ginseng exhibit cytotoxicity against human A549 and Hep-3B cell lines. J. Nat. Med. 2012 66 3 576 582 10.1007/s11418‑012‑0662‑y 22529048
    [Google Scholar]
  61. Li K.K. Yao C.M. Yang X.W. Four new dammarane-type triterpene saponins from the stems and leaves of Panax ginseng and their cytotoxicity on HL-60 cells. Planta Med. 2012 78 2 189 192 10.1055/s‑0031‑1280320 22034065
    [Google Scholar]
  62. Zhang S.L. Chen Y.J. Cui C.B. A new minor saponin from the leaves of Panax ginseng C. A. Meyer. Yao Xue Xue Bao 1989 24 11 877 879 2618687
    [Google Scholar]
  63. Lee S.M. Shon H.J. Choi C.S. Hung T.M. Min B.S. Bae K. Ginsenosides from heat processed ginseng. Chem. Pharm. Bull. 2009 57 1 92 94 10.1248/cpb.57.92 19122325
    [Google Scholar]
  64. Yoshikawa M. Sugimoto S. Nakamura S. Matsuda H. Medicinal flowers. XI. Structures of new dammarane-type triterpene diglycosides with hydroperoxide group from flower buds of Panax ginseng. Chem. Pharm. Bull. 2007 55 4 571 576 10.1248/cpb.55.571 17409550
    [Google Scholar]
  65. Tung N.H. Song G.Y. Kim J.A. Hyun J.H. Kang H.K. Kim Y.H. Dammarane-type saponins from the flower buds of Panax ginseng and their effects on human leukemia cells. Bioorg. Med. Chem. Lett. 2010 20 1 309 314 10.1016/j.bmcl.2009.10.110 19926279
    [Google Scholar]
  66. Tung N.H. Song G.Y. Minh C.V. Steamed ginseng-leaf components enhance cytotoxic effects on human leukemia HL-60 cells. Chem. Pharm. Bull. 2010 58 8 1111 1115 10.1248/cpb.58.1111 20686271
    [Google Scholar]
  67. Qiu F. Ma Z.Z. Xu S.X. Yao X.S. Che C.T. Chen Y.J. A pair of 24-hydroperoxyl epimeric dammarane saponins from flower-buds of Panax ginseng. J. Asian Nat. Prod. Res. 2001 3 3 235 240 10.1080/10286020108041396 11491400
    [Google Scholar]
  68. Tung N.H. Song G.Y. Nhiem N.X. Dammarane-type saponins from the flower buds of Panax ginseng and their intracellular radical scavenging capacity. J. Agric. Food Chem. 2010 58 2 868 874 10.1021/jf903334g 20030409
    [Google Scholar]
  69. Dou D.Q. Chen Y.J. Liang L.H. Pang F.G. Shimizu N. Takeda T. Six new dammarane-type triterpene saponins from the leaves of Panax ginseng. Chem. Pharm. Bull. 2001 49 4 442 446 10.1248/cpb.49.442 11310671
    [Google Scholar]
  70. Fahim M.S. Fahim Z. Harman J.M. Clevenger T.E. Mullins W. Hafez E.S.E. Effect of Panax ginseng on testosterone level and prostate in male rats. Arch. Androl. 1982 8 4 261 263 10.3109/01485018208990207 7202345
    [Google Scholar]
  71. Park J.Y. Park W.Y. Song G. Panax ginseng C.A. meyer alleviates benign prostatic hyperplasia while preventing finasteride-induced side effects. Front. Pharmacol. 2023 14 1039622 10.3389/fphar.2023.1039622 36713838
    [Google Scholar]
  72. Lee J.H. Shim J.S. Chung M.S. Lim S.T. Kim K.H. Inhibition of pathogen adhesion to host cells by polysaccharides from Panax ginseng. Biosci. Biotechnol. Biochem. 2009 73 1 209 212 10.1271/bbb.80555 19129635
    [Google Scholar]
  73. Wu H. Lee B. Yang L. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol. Med. Microbiol. 2011 62 1 49 56 10.1111/j.1574‑695X.2011.00787.x 21303421
    [Google Scholar]
  74. Song Z. Kong K.F. Wu H. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection. Phytomedicine 2010 17 13 1040 1046 10.1016/j.phymed.2010.03.015 20554187
    [Google Scholar]
  75. Lee K.A. Kim W.J. Kim H.J. Kim K.T. Paik H.D. Antibacterial activity of Ginseng (Panax ginseng C. A. Meyer) stems–leaves extract produced by subcritical water extraction. Int. J. Food Sci. Technol. 2013 48 5 947 953 10.1111/ijfs.12046
    [Google Scholar]
  76. El-Semary M.S. Belal F. El-Emam A.A. Rabie Shehab El-Din E.M. El-Masry A.A. Ginseng root extract-mediated synthesis of monodisperse silver nanoparticles as a fluorescent probe for the spectrofluorometric determination of nilvadipine; Evaluation of remarkable anti-bacterial, anti-fungal and in-vitro cytotoxic activities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 311 124017 10.1016/j.saa.2024.124017 38354677
    [Google Scholar]
  77. Park E.H. Yum J. Ku K.B. Red Ginseng-containing diet helps to protect mice and ferrets from the lethal infection by highly pathogenic H5N1 influenza virus. J. Ginseng Res. 2014 38 1 40 46 10.1016/j.jgr.2013.11.012 24558309
    [Google Scholar]
  78. Yoo D.G. Kim M.C. Park M.K. Protective effect of Korean red ginseng extract on the infections by H1N1 and H3N2 influenza viruses in mice. J. Med. Food 2012 15 10 855 862 10.1089/jmf.2012.0017 22856395
    [Google Scholar]
  79. Lee J.S. Ko E.J. Hwang H.S. Antiviral activity of ginseng extract against respiratory syncytial virus infection. Int. J. Mol. Med. 2014 34 1 183 190 10.3892/ijmm.2014.1750 24756136
    [Google Scholar]
  80. Lee M.H. Lee B.H. Jung J.Y. Cheon D.S. Kim K.T. Choi C.S. Antiviral effect of korean red ginseng extract and ginsenosides on murine norovirus and feline calicivirus as surrogates for human norovirus. J. Ginseng Res. 2011 35 4 429 435 10.5142/jgr.2011.35.4.429 23717088
    [Google Scholar]
  81. Lee M.H. Lee B.H. Lee S. Choi C. Reduction of hepatitis A virus on FRhK-4 cells treated with Korean red ginseng extract and ginsenosides. J. Food Sci. 2013 78 9 M1412 M1415 10.1111/1750‑3841.12205 23931146
    [Google Scholar]
  82. Lee J. Lee Y.N. Lee Y.T. Ginseng protects against respiratory syncytial virus by modulating multiple immune cells and inhibiting viral replication. Nutrients 2015 7 2 1021 1036 10.3390/nu7021021 25658239
    [Google Scholar]
  83. Cho Y.K. Sung H. Lee H.J. Hyun Joo C. Jae Cho G. Long-term intake of Korean red ginseng in HIV-1-infected patients: Development of resistance mutation to zidovudine is delayed. Int. Immunopharmacol. 2001 1 7 1295 1305 10.1016/S1567‑5769(01)00061‑3 11460310
    [Google Scholar]
  84. Yang S. Han S.B. Kang S. The relationship of skin disorders, COVID-19, and the therapeutic potential of ginseng: A review. J. Ginseng Res. 2023 47 1 33 43 10.1016/j.jgr.2022.09.010 36249949
    [Google Scholar]
  85. Liu Z. Li W. Li X. Antidiabetic effects of malonyl ginsenosides from Panax ginseng on type 2 diabetic rats induced by high-fat diet and streptozotocin. J. Ethnopharmacol. 2013 145 1 233 240 10.1016/j.jep.2012.10.058 23147499
    [Google Scholar]
  86. Zhou P. Xie W. He S. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019 8 3 204 10.3390/cells8030204 30823412
    [Google Scholar]
  87. Wang H. Huang R. Li H. Jiao L. Liu S. Wu W. Serum metabolomic analysis of the anti-diabetic effect of Ginseng berry in type II diabetic rats based on ultra high-performance liquid chromatography-high resolution mass spectrometry. J. Pharm. Biomed. Anal. 2021 196 113897 10.1016/j.jpba.2021.113897 33508764
    [Google Scholar]
  88. Kim S. Kim N. Jeong J. Anti-cancer effect of Panax ginseng and its metabolites: From traditional medicine to modern drug discovery. Processes 2021 9 8 1344 10.3390/pr9081344
    [Google Scholar]
  89. Hwang W.L. A study on the antitumor activity of Panax ginseng. J. Ginseng Res. 1993 17 1 52 60
    [Google Scholar]
  90. Zhou X. Liu H. Zhang M. Li C. Li G. Spectrum‐effect relationship between UPLC fingerprints and anti‐lung cancer effect of Panax ginseng. Phytochem. Anal. 2021 32 3 339 346 10.1002/pca.2980 32808367
    [Google Scholar]
  91. Lee C. Lee S. Jang Y.P. Park J. Anti-inflammatory activity of vacuum distillate from Panax ginseng root on LPS-induced RAW264.7 cells. J. Microbiol. Biotechnol. 2024 34 2 262 269 10.4014/jmb.2312.12001 38213284
    [Google Scholar]
  92. Xiang Y. Zou M. Ou F. A comparison of the impacts of different drying methods on the volatile organic compounds in ginseng. Molecules 2024 29 22 5235 10.3390/molecules29225235 39598624
    [Google Scholar]
  93. Rhule A. Navarro S. Smith J.R. Shepherd D.M. Panax notoginseng attenuates LPS-induced pro-inflammatory mediators in RAW264.7 cells. J. Ethnopharmacol. 2006 106 1 121 128 10.1016/j.jep.2005.12.012 16427227
    [Google Scholar]
  94. Joh E.H. Lee I.A. Jung I.H. Kim D.H. Ginsenoside Rb1 and its metabolite compound K inhibit IRAK-1 activation—The key step of inflammation. Biochem. Pharmacol. 2011 82 3 278 286 10.1016/j.bcp.2011.05.003 21600888
    [Google Scholar]
  95. Park J.S. Shin J.A. Jung J.S. Anti-inflammatory mechanism of compound K in activated microglia and its neuroprotective effect on experimental stroke in mice. J. Pharmacol. Exp. Ther. 2012 341 1 59 67 10.1124/jpet.111.189035 22207656
    [Google Scholar]
  96. Cho J.Y. Yoo E.S. Baik K.U. Park M.H. Han B.H. In vitro inhibitory effect of protopanaxadiol ginsenosides on tumor necrosis factor (TNF)-α production and its modulation by known TNF-α antagonists. Planta Med. 2001 67 3 213 218 10.1055/s‑2001‑12005 11345690
    [Google Scholar]
  97. Wu C.F. Bi X.L. Yang J.Y. Differential effects of ginsenosides on NO and TNF-α production by LPS-activated N9 microglia. Int. Immunopharmacol. 2007 7 3 313 320 10.1016/j.intimp.2006.04.021 17276889
    [Google Scholar]
  98. Lee I.A. Hyam S.R. Jang S.E. Han M.J. Kim D.H. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. J. Agric. Food Chem. 2012 60 38 9595 9602 10.1021/jf301372g 22849695
    [Google Scholar]
  99. Hu J.F. Song X.Y. Chu S.F. Inhibitory effect of ginsenoside Rg1 on lipopolysaccharide-induced microglial activation in mice. Brain Res. 2011 1374 8 14 10.1016/j.brainres.2010.11.069 21126513
    [Google Scholar]
  100. Joo S.S. Yoo Y.M. Ahn B.W. Prevention of inflammation-mediated neurotoxicity by Rg3 and its role in microglial activation. Biol. Pharm. Bull. 2008 31 7 1392 1396 10.1248/bpb.31.1392 18591781
    [Google Scholar]
  101. Kim T.W. Joh E.H. Kim B. Kim D.H. Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int. Immunopharmacol. 2012 12 1 110 116 10.1016/j.intimp.2011.10.023 22107725
    [Google Scholar]
  102. Jung J.S. Kim D.H. Kim H.S. Ginsenoside Rh1 suppresses inducible nitric oxide synthase gene expression in IFN-γ-stimulated microglia via modulation of JAK/STAT and ERK signaling pathways. Biochem. Biophys. Res. Commun. 2010 397 2 323 328 10.1016/j.bbrc.2010.05.117 20510882
    [Google Scholar]
  103. Zheng H. Jeong Y. Song J. Ji G.E. Oral administration of ginsenoside Rh1 inhibits the development of atopic dermatitis-like skin lesions induced by oxazolone in hairless mice. Int. Immunopharmacol. 2011 11 4 511 518 10.1016/j.intimp.2010.12.022 21238621
    [Google Scholar]
  104. Bae E.A. Kim E.J. Park J.S. Kim H.S. Ryu J. Kim D.H. Ginsenosides Rg3 and Rh2 inhibit the activation of AP-1 and protein kinase A pathway in lipopolysaccharide/interferon-γ-stimulated BV-2 microglial cells. Planta Med. 2006 72 7 627 633 10.1055/s‑2006‑931563 16673329
    [Google Scholar]
  105. Li L.C. Piao H.M. Zheng M.Y. Lin Z.H. Choi Y.H. Yan G.H. Ginsenoside Rh2 attenuates allergic airway inflammation by modulating nuclear factor-κB activation in a murine model of asthma. Mol. Med. Rep. 2015 12 5 6946 6954 10.3892/mmr.2015.4272 26502836
    [Google Scholar]
  106. Kim B. Lee Y. Park T. Kim H. Rhee M. Cho J. Ginsenoside Rp1, a ginsenoside derivative, blocks lipopolysaccharide-induced interleukin-1β production via suppression of the NF-kappaB pathway. Planta Med. 2009 75 4 321 326 10.1055/s‑0028‑1112218 19145554
    [Google Scholar]
  107. Shen T. Lee J.H. Park M.H. Ginsenoside Rp1, a ginsenoside derivative, blocks promoter activation of iNOS and COX-2 genes by suppression of an IKKβ-mediated NF-кB pathway in HEK293 cells. J. Ginseng Res. 2011 35 2 200 208 10.5142/jgr.2011.35.2.200 23717062
    [Google Scholar]
  108. Baek K.S. Yi Y.S. Son Y.J. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components. J. Ginseng Res. 2016 40 4 437 444 10.1016/j.jgr.2016.08.003 27746698
    [Google Scholar]
  109. Li F. Cao Y. Luo Y. Two new triterpenoid saponins derived from the leaves of Panax ginseng and their antiinflammatory activity. J. Ginseng Res. 2019 43 4 600 605 10.1016/j.jgr.2018.09.004 31695566
    [Google Scholar]
  110. Sun X.B. Matsumoto T. Yamada H. Anti-ulcer activity and mode of action of the polysaccharide fraction from the leaves of Panax ginseng. Planta Med. 1992 58 5 432 435 10.1055/s‑2006‑961507 1470667
    [Google Scholar]
  111. Jeong C.S. Hyun J.E. Kim Y.S. Lee E.S. Ginsenoside RB1 the anti-ulcer constituent from the head of Panax ginseng. Arch. Pharm. Res. 2003 26 11 906 911 10.1007/BF02980198 14661855
    [Google Scholar]
  112. Liu Y. Sui D. Fu W. Protective effects of polysaccharides from Panax ginseng on acute gastric ulcers induced by ethanol in rats. Food Funct. 2021 12 6 2741 2749 10.1039/D0FO02947E 33681872
    [Google Scholar]
  113. Fan H. Cao Y. Xi Z. Wang G. Zheng J. Protective Effect of Panax ginseng on osteoporosis in Ovariectomized Female Guinea-pigs. Front Med Sci Res 2021 3 5 24 29
    [Google Scholar]
  114. Lee H.Y. Park S.H. Chae S.W. Aqueous ginseng extract has a preventive role in RANKL-induced osteoclast differentiation and estrogen deficiency-induced osteoporosis. J. Funct. Foods 2015 13 192 203 10.1016/j.jff.2014.12.039
    [Google Scholar]
  115. Kim H.G. Yoo S.R. Park H.J. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: A randomized, placebo-controlled clinical trial. Food Chem. Toxicol. 2011 49 9 2229 2235 10.1016/j.fct.2011.06.020 21699953
    [Google Scholar]
  116. Jung C.H. Seog H.M. Choi I.W. Park M.W. Cho H.Y. Antioxidant properties of various solvent extracts from wild ginseng leaves. Lebensm. Wiss. Technol. 2006 39 3 266 274 10.1016/j.lwt.2005.01.004
    [Google Scholar]
  117. Chung S.I. Kang M.Y. Lee S.C. In vitro and in vivo antioxidant activity of aged ginseng (Panax ginseng). Prev. Nutr. Food Sci. 2016 21 1 24 30 10.3746/pnf.2016.21.1.24 27069902
    [Google Scholar]
  118. Jie Y.H. Cammisuli S. Baggiolini M. Immunomodulatory effects of Panax ginseng CA Meyer in the mouse. Agents Actions 1984 15 3-4 386 391 10.1007/BF01972376 6084415
    [Google Scholar]
  119. Hu Y. He Y. Niu Z. A review of the immunomodulatory activities of polysaccharides isolated from Panax species. J. Ginseng Res. 2022 46 1 23 32 10.1016/j.jgr.2021.06.003 35058724
    [Google Scholar]
  120. Niranjana Murthy H Dandin VS Yoeup Paek K Hepatoprotective activity of ginsenosides from Panax ginseng adventitious roots against carbon tetrachloride treated hepatic injury in rats J Ethnopharmacol 2014 158 Pt A 442 6 10.1016/j.jep.2014.10.047 25446594
    [Google Scholar]
  121. Abdelfattah-Hassan A. Shalaby S.I. Khater S.I. El-Shetry E.S. Abd El Fadil H. Elsayed S.A. Panax ginseng is superior to vitamin E as a hepatoprotector against cyclophosphamide-induced liver damage. Complement. Ther. Med. 2019 46 95 102 10.1016/j.ctim.2019.08.005 31519295
    [Google Scholar]
  122. Yao F. Wang X. Cao X. Integration of transcriptomics and metabolomics confirmed hepatoprotective effects of steamed shoot extracts of ginseng (Panax ginseng C.A. Meyer) on toxicity caused by overdosed acetaminophen. Biomed. Pharmacother. 2021 143 112177 10.1016/j.biopha.2021.112177 34555627
    [Google Scholar]
  123. Kim S. Park K.S. Effects of Panax ginseng extract on lipid metabolism in humans. Pharmacol. Res. 2003 48 5 511 513 10.1016/S1043‑6618(03)00189‑0 12967598
    [Google Scholar]
  124. Lee L.S. Cho C.W. Hong H.D. Lee Y.C. Choi U.K. Kim Y.C. Hypolipidemic and antioxidant properties of phenolic compound-rich extracts from white ginseng (Panax ginseng) in cholesterol-fed rabbits. Molecules 2013 18 10 12548 12560 10.3390/molecules181012548 24152674
    [Google Scholar]
  125. Cui Y. Wu J. Wang Y. Protective effects of ginsenoside F2 on isoproterenol-induced myocardial infarction by activating the Nrf2/HO-1 and PI3K/Akt signaling pathways. Phytomedicine 2024 129 155637 10.1016/j.phymed.2024.155637 38669969
    [Google Scholar]
  126. Braak H. Tredici K.D. Rüb U. de Vos R.A.I. Jansen Steur E.N.H. Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003 24 2 197 211 10.1016/S0197‑4580(02)00065‑9 12498954
    [Google Scholar]
  127. Van Kampen J. Robertson H. Hagg T. Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp. Neurol. 2003 184 1 521 529 10.1016/j.expneurol.2003.08.002 14637121
    [Google Scholar]
  128. Leung K.W. Yung K.K.L. Mak N.K. Chan Y.S. Fan T.P. Wong R.N.S. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity. Neuropharmacology 2007 52 3 827 835 10.1016/j.neuropharm.2006.10.001 17123556
    [Google Scholar]
  129. Liu Q. Kou J.P. Yu B.Y. Ginsenoside Rg1 protects against hydrogen peroxide-induced cell death in PC12 cells via inhibiting NF-κB activation. Neurochem. Int. 2011 58 1 119 125 10.1016/j.neuint.2010.11.004 21078355
    [Google Scholar]
  130. Lin W.M. Zhang Y.M. Moldzio R. Rausch W.D. Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J. Neural Transm. Suppl. 2007 72 72 105 112 10.1007/978‑3‑211‑73574‑9_13 17982883
    [Google Scholar]
  131. Selkoe D.J. Schenk D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol. 2003 43 1 545 584 10.1146/annurev.pharmtox.43.100901.140248 12415125
    [Google Scholar]
  132. Xu N. Xing S. Li J. Water extract of ginseng alleviates parkinsonism in MPTP–induced Parkinson’s disease mice. PLoS One 2024 19 9 0296424 10.1371/journal.pone.0296424 39302939
    [Google Scholar]
  133. Tanzi R.E. Bertram L. Alzheimer’s disease: The latest suspect. Nature 2008 454 7205 707 708 10.1038/454706a 18685694
    [Google Scholar]
  134. Bazan N.G. Palacios-Pelaez R. Lukiw W.J. Hypoxia signaling to genes: Significance in Alzheimer’s disease. Mol. Neurobiol. 2002 26 2-3 283 298 10.1385/MN:26:2‑3:283 12428761
    [Google Scholar]
  135. Heo J.H. Lee S.T. Chu K. An open‐label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur. J. Neurol. 2008 15 8 865 868 10.1111/j.1468‑1331.2008.02157.x 18684311
    [Google Scholar]
  136. Lee S.T. Chu K. Sim J.Y. Heo J.H. Kim M. Panax ginseng enhances cognitive performance in Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2008 22 3 222 226 10.1097/WAD.0b013e31816c92e6 18580589
    [Google Scholar]
  137. Zhao H. Li Q. Zhang Z. Pei X. Wang J. Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res. 2009 1256 111 122 10.1016/j.brainres.2008.12.031 19133247
    [Google Scholar]
  138. Tu L.H. Ma J. Liu H.P. Wang R.R. Luo J. The neuroprotective effects of ginsenosides on calcineurin activity and tau phosphorylation in SY5Y cells. Cell. Mol. Neurobiol. 2009 29 8 1257 1264 10.1007/s10571‑009‑9421‑3 19517226
    [Google Scholar]
  139. Qian Y.H. Han H. Hu X.D. Shi L.L. Protective effect of ginsenoside Rb1 on β -amyloid protein(1-42)-induced neurotoxicity in cortical neurons. Neurol. Res. 2009 31 7 663 667 10.1179/174313209X385572 19138476
    [Google Scholar]
  140. Xie X. Wang H.T. Li C.L. Ginsenoside Rb1 protects PC12 cells against β-amyloid-induced cell injury. Mol. Med. Rep. 2010 3 4 635 639 2147229
    [Google Scholar]
  141. Li N. Liu B. Dluzen D.E. Jin Y. Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J. Ethnopharmacol. 2007 111 3 458 463 10.1016/j.jep.2006.12.015 17257792
    [Google Scholar]
  142. Yang L. Hao J. Zhang J. Ginsenoside Rg3 promotes beta-amyloid peptide degradation by enhancing gene expression of neprilysin. J. Pharm. Pharmacol. 2009 61 3 375 380 10.1211/jpp.61.03.0013 19222911
    [Google Scholar]
  143. Hwang S.H. Shin E.J. Shin T.J. Gintonin, a ginseng-derived lysophosphatidic acid receptor ligand, attenuates Alzheimer’s disease-related neuropathies: Involvement of non-amyloidogenic processing. J. Alzheimers Dis. 2012 31 1 207 223 10.3233/JAD‑2012‑120439 22543851
    [Google Scholar]
  144. Wang Z. Zhang Z. Liu J. Guo M. Li H. Panax ginseng in the treatment of Alzheimer’s disease and vascular dementia. J. Ginseng Res. 2023 47 4 506 514 10.1016/j.jgr.2023.03.001 37397417
    [Google Scholar]
  145. Damiano M. Galvan L. Déglon N. Brouillet E. Mitochondria in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis. 2010 1802 1 52 61 10.1016/j.bbadis.2009.07.012
    [Google Scholar]
  146. Ryu J.K. Kim S.U. McLarnon J.G. Blockade of quinolinic acid-induced neurotoxicity by pyruvate is associated with inhibition of glial activation in a model of Huntington’s disease. Exp. Neurol. 2004 187 1 150 159 10.1016/j.expneurol.2004.01.006 15081596
    [Google Scholar]
  147. Kim J.H. Kim S. Yoon I.S. Protective effects of ginseng saponins on 3-nitropropionic acid-induced striatal degeneration in rats. Neuropharmacology 2005 48 5 743 756 10.1016/j.neuropharm.2004.12.013 15814108
    [Google Scholar]
  148. Park J.S. Park E.M. Kim D.H. Anti-inflammatory mechanism of ginseng saponins in activated microglia. J. Neuroimmunol. 2009 209 1-2 40 49 10.1016/j.jneuroim.2009.01.020 19232442
    [Google Scholar]
  149. Wu J. Jeong H.K. Bulin S.E. Kwon S.W. Park J.H. Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington’s disease. J. Neurosci. Res. 2009 87 8 1904 1912 10.1002/jnr.22017 19185022
    [Google Scholar]
  150. Conway D.S. Cohen J.A. Mechanisms of disability accumulation in multiple sclerosis. Nat. Rev. Neurol. 2010 6 12 654 655 10.1038/nrneurol.2010.175 21131915
    [Google Scholar]
  151. Hwang I. Ahn G. Park E. Ha D. Song J.Y. Jee Y. An acidic polysaccharide of Panax ginseng ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Immunol. Lett. 2011 138 2 169 178 10.1016/j.imlet.2011.04.005 21524666
    [Google Scholar]
  152. Chen L. Wang X. Lin Z.X. Dai J.G. Huang Y.F. Zhao Y.N. Preventive effects of ginseng total saponins on chronic corticosterone‐induced impairment in astrocyte structural plasticity and hippocampal atrophy. Phytother. Res. 2017 31 9 1341 1348 10.1002/ptr.5859 28656606
    [Google Scholar]
  153. Jiang B. Xiong Z. Yang J. Antidepressant‐like effects of ginsenoside Rg1 are due to activation of the BDNF signalling pathway and neurogenesis in the hippocampus. Br. J. Pharmacol. 2012 166 6 1872 1887 10.1111/j.1476‑5381.2012.01902.x 22335772
    [Google Scholar]
  154. Wang Y. Kan H. Yin Y. Wu W. Hu W. Protective effects of ginsenoside Rg1 on chronic restraint stress induced learning and memory impairments in male mice. Pharmacol. Biochem. Behav. 2013 105 128 134 10.1016/j.pbb.2014.02.012 24560910
    [Google Scholar]
  155. Xu Y. Zhang J.J. Xiong L. Zhang L. Sun D. Liu H. Antidepressant-like effect of saponins extracted from Chaihu-jia-longgu-muli-tang and its possible mechanism. Pharmacol. Biochem. Behav. 2010 96 3 301 308
    [Google Scholar]
  156. Wiklund I.K. Mattsson L.A. Lindgren R. Limoni C. Elmståhl S. Effects of a standardized ginseng extract on quality of life and physiological parameters in symptomatic postmenopausal women: A double-blind, placebo-controlled trial. Int. J. Clin. Pharmacol. Res. 1999 19 3 89 99 10761538
    [Google Scholar]
  157. Jeong H.G. Ko E.J. Yoon J.H. Jang S.E. Antidepressant-like effects of Korean Red Ginseng in the forced swim test. Phytother. Res. 2014 28 11 1826 1832
    [Google Scholar]
  158. Lee K.J. Ji G.E. The effect of fermented red ginseng on depression is mediated by lipids. Nutr. Neurosci. 2014 17 1 7 15 10.1179/1476830513Y.0000000059 24088416
    [Google Scholar]
  159. Carabin I.G. Burdock G.A. Chatzidakis C. Safety assessment of Panax ginseng. Int. J. Toxicol. 2000 19 4 293 301 10.1080/10915810050202105
    [Google Scholar]
  160. Park S.J. Lim K.H. Noh J.H. Subacute oral toxicity study of korean red ginseng extract in sprague-dawley rats. Toxicol. Res. 2013 29 4 285 292 10.5487/TR.2013.29.4.285 24578799
    [Google Scholar]
  161. Kee C.J. Choe S.Y. Lee M.H. Park M.J. Nahm D.H. Safety and tolerability of Panax ginseng root extract: A randomized, placebo-controlled, clinical trial in healthy Korean volunteers. Am. J. Chin. Med. 2012 20 3-4 275 280
    [Google Scholar]
  162. Park S.K. Kim S.W. Seo H.W. Long-term evaluation of safety and biological effects of Korean Red Ginseng (Panax ginseng): A long-term in vivo study. BMC Complement. Med. Ther. 2022 22 1 284 10.1186/s12906‑022‑03736‑5 36333693
    [Google Scholar]
  163. Malati C.Y. Robertson S.M. Hunt J.D. Influence of Panax ginseng on Cytochrome P450 (CYP)3A and P-glycoprotein (Pgp) activity in healthy subjects. Ann. Pharmacother. 2003 37 5 623 628
    [Google Scholar]
  164. Ramanathan M.R. Penzak S.R. Pharmacokinetic drug interactions with Panax ginseng. Eur. J. Drug Metab. Pharmacokinet. 2017 42 4 545 557 10.1007/s13318‑016‑0387‑5 27864798
    [Google Scholar]
  165. Coon J.T. Ernst E. Panax ginseng: a systematic review of adverse effects and drug interactions. Drug Saf. 2002 25 5 323 344 10.2165/00002018‑200225050‑00003 12020172
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344376497251007045815
Loading
/content/journals/raaidd/10.2174/0127724344376497251007045815
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test