Skip to content
2000
image of Inhibition of Biofilm Formation and Gene Expression by Silicon Dioxide Nanoparticles and Zinc Oxide/Zeolite Nanocomposites on Streptococcus mutans

Abstract

Background

() is recognized as the primary oral pathogen responsible for dental caries. The formation of biofilms on tooth surfaces is a crucial virulence factor for . This study aimed to investigate the antimicrobial and anti-biofilm effects of silicon dioxide nanoparticles (SiO NPs) and zinc oxide/zeolite nanocomposites (ZnO/Zeolite NCs) on gene expression and biofilm formation.

Methods

Minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), sub-MIC, safranin staining, growth curve analysis, and MTT assays were performed to evaluate the anti-biofilm properties of the nanoparticles. The expression levels of the , , , and genes were evaluated by real-time PCR. Cytotoxic effects of the nanoparticles were measured by the MTT assay with human gingival fibroblast (HGF2PI2) cells.

Results

Both SiO NPs and ZnO/Zeolite NCs effectively inhibited biofilm formation, with MTT assay results showing a 79% inhibition by SiO NPs and 95% by ZnO/Zeolite NCs. Additionally, both nanoparticles reduced the transcription levels of the ftf, gtfB, vicR, and gbpB genes, with no toxic effects observed on HGF2PI2 cells at a concentration of 32 mg/ml.

Discussion

These findings suggest that SiO2 NPs and ZnO/Zeolite NCs are promising agents against biofilms, with potential applications in oral care products.

Conclusion

SiO NPs and ZnO/Zeolite NCs show significant potential for preventing biofilm formation by , representing effective and cost-efficient antibacterial options for oral health.

Loading

Article metrics loading...

/content/journals/raaidd/10.2174/0127724344367073251106200403
2026-01-26
2026-02-19
Loading full text...

Full text loading...

References

  1. Galvão LCC Miller JH Kajfasz JK Transcriptional and phenotypic characterization of novel Spx-regulated genes in Streptococcus mutans. PLoS One 2015 10 4 e0124969 10.1371/journal.pone.0124969 25905865
    [Google Scholar]
  2. Wassel M.O. Khattab M.A. Antibacterial activity against Streptococcus mutans and inhibition of bacterial induced enamel demineralization of propolis, miswak, and chitosan nanoparticles based dental varnishes. J. Adv. Res. 2017 8 4 387 392 10.1016/j.jare.2017.05.006 28560054
    [Google Scholar]
  3. Chen H. Tang Y. Weir M.D. Effects of S. mutans gene-modification and antibacterial monomer dimethylaminohexadecyl methacrylate on biofilm growth and acid production. Dent. Mater. 2020 36 2 296 309 10.1016/j.dental.2019.12.001 31839202
    [Google Scholar]
  4. Huang Q. Wang S. Sun Y. Shi C. Yang H. Lu Z. Effects of Ag/ZnO nanocomposite at sub-minimum inhibitory concentrations on virulence factors of Streptococcus mutans. Arch. Oral Biol. 2020 111 104640 10.1016/j.archoralbio.2019.104640 31884336
    [Google Scholar]
  5. Awasthi A. Sharma P. Jangir L. Dose dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in presence of ZnO nanoparticles. Mater. Sci. Eng. C 2020 113 111021 10.1016/j.msec.2020.111021 32487374
    [Google Scholar]
  6. Habibi N. Jazani N.H. Yousefi S. Evaluation of the antibacterial effects of nickel nanoparticles on biofilm production by Streptococcus mutans. J. Med. Bacteriol. 2017 6 1-2 8 14
    [Google Scholar]
  7. Hasibul K. Nakayama-Imaohji H. Hashimoto M. D Tagatose inhibits the growth and biofilm formation of Streptococcus mutans. Mol. Med. Rep. 2018 17 1 843 851 29115611
    [Google Scholar]
  8. Florez Salamanca E.J. Klein M.I. Extracellular matrix influence in Streptococcus mutans gene expression in a cariogenic biofilm. Mol. Oral Microbiol. 2018 33 2 181 193 10.1111/omi.12212 29284195
    [Google Scholar]
  9. Zhang Z. Lyu X. Xu Q. Utilization of the extract of Cedrus deodara (Roxb. ex D.Don) G. Don against the biofilm formation and the expression of virulence genes of cariogenic bacterium Streptococcus mutans. J. Ethnopharmacol. 2020 257 112856 10.1016/j.jep.2020.112856 32278760
    [Google Scholar]
  10. Yaghubi kalurazi T, Jafari A. Evaluation of magnesium oxide and zinc oxide nanoparticles against multi-drug-resistance Mycobacterium tuberculosis. Indian J. Tuberc. 2021 68 2 195 200 10.1016/j.ijtb.2020.07.032 33845951
    [Google Scholar]
  11. Bahador A. Sodagar A. Khalil S. Kassaee M.Z. Shahroudi A.S. Pourakbari B. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria. J. Orthod. Sci. 2016 5 1 7 13 10.4103/2278‑0203.176652 26998471
    [Google Scholar]
  12. Sodagar A. Bahador A. Khalil S. Saffar Shahroudi A. Zaman Kassaee M. The effect of TiO2 and SiO2 nanoparticles on flexural strength of poly (methyl methacrylate) acrylic resins. J. Prosthodont. Res. 2013 57 1 15 19 10.1016/j.jpor.2012.05.001 23200530
    [Google Scholar]
  13. Rad M.M. Najafzadeh N. Tata N. Jafari A. Ag–ZnO nanocomposites cause cytotoxicity and induce cell cycle arrest in human gastric and melanoma cancer cells. Pharm. Chem. J. 2018 52 2 112 116 10.1007/s11094‑018‑1774‑9
    [Google Scholar]
  14. Alswat A.A. Ahmad M.B. Saleh T.A. Hussein M.Z.B. Ibrahim N.A. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng. C 2016 68 505 511 10.1016/j.msec.2016.06.028 27524047
    [Google Scholar]
  15. Demirci S. Ustaoğlu Z. Yılmazer G.A. Sahin F. Baç N. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms. Appl. Biochem. Biotechnol. 2014 172 3 1652 1662 10.1007/s12010‑013‑0647‑7 24242073
    [Google Scholar]
  16. Hanim S.A.M. Malek N.A.N.N. Ibrahim Z. Amine-functionalized, silver-exchanged zeolite NaY: Preparation, characterization and antibacterial activity. Appl. Surf. Sci. 2016 360 121 130 10.1016/j.apsusc.2015.11.010
    [Google Scholar]
  17. Venegas M.A. Bollaert M.D. Jafari A. Nanoparticles against resistant Pseudomonas spp. Microb. Pathog. 2018 118 115 117 10.1016/j.micpath.2018.03.023 29548697
    [Google Scholar]
  18. Cury J.A. Seils J. Koo H. Isolation and purification of total rna from streptococcus mutans in suspension cultures and biofilms. Braz. Oral Res. 2008 22 3 216 222 10.1590/S1806‑83242008000300005 18949306
    [Google Scholar]
  19. Holzapfel B. Wickert L. Die quantitative Real‐Time‐PCR (qRT‐PCR). Methoden und Anwendungsgebiete. Biol. Unserer Zeit 2007 37 2 120 126 10.1002/biuz.200610332
    [Google Scholar]
  20. Alswata A.A. Ahmad M.B. Al-Hada N.M. Kamari H.M. Hussein M.Z.B. Ibrahim N.A. Preparation of zeolite/zinc oxide nanocomposites for toxic metals removal from water. Results Phys. 2017 7 723 731 10.1016/j.rinp.2017.01.036
    [Google Scholar]
  21. Qian Z. Hu G. Zhang S. Yang M. Preparation and characterization of montmorillonite–silica nanocomposites: A sol–gel approach to modifying clay surfaces. Physica B 2008 403 18 3231 3238 10.1016/j.physb.2008.04.008
    [Google Scholar]
  22. Yue J. Yang H. Liu S. Song F. Guo J. Huang C. Influence of naringenin on the biofilm formation of Streptococcus mutans. J. Dent. 2018 76 24 31 10.1016/j.jdent.2018.04.013 29679633
    [Google Scholar]
  23. Pourhajibagher M. Rahimi esboei B, Hodjat M, Bahador A. Sonodynamic excitation of nanomicelle curcumin for eradication of Streptococcus mutans under sonodynamic antimicrobial chemotherapy: Enhanced anti-caries activity of nanomicelle curcumin. Photodiagn. Photodyn. Ther. 2020 30 101780 10.1016/j.pdpdt.2020.101780 32315777
    [Google Scholar]
  24. Lee J.H. Regmi S.C. Kim J.A. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun. 2011 79 12 4819 4827 10.1128/IAI.05580‑11 21930760
    [Google Scholar]
  25. Chen H. Zhang B. Weir M.D. S. mutans gene-modification and antibacterial resin composite as dual strategy to suppress biofilm acid production and inhibit caries. J. Dent. 2020 93 103278 10.1016/j.jdent.2020.103278 31945398
    [Google Scholar]
  26. Lipovsky A. Tzitrinovich Z. Friedmann H. Applerot G. Gedanken A. Lubart R. EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J. Phys. Chem. C 2009 113 36 15997 16001 10.1021/jp904864g
    [Google Scholar]
  27. Kıvanç M. Barutca B. Koparal A.T. Göncü Y. Bostancı S.H. Ay N. Effects of hexagonal boron nitride nanoparticles on antimicrobial and antibiofilm activities, cell viability. Mater. Sci. Eng. C 2018 91 115 124 10.1016/j.msec.2018.05.028 30033238
    [Google Scholar]
  28. AshaRani PV, Low Kah Mun G, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009 3 2 279 290 10.1021/nn800596w 19236062
    [Google Scholar]
  29. He Z. Wang Q. Hu Y. Use of the quorum sensing inhibitor furanone C-30 to interfere with biofilm formation by Streptococcus mutans and its luxS mutant strain. Int. J. Antimicrob. Agents 2012 40 1 30 35 10.1016/j.ijantimicag.2012.03.016 22578766
    [Google Scholar]
/content/journals/raaidd/10.2174/0127724344367073251106200403
Loading
/content/journals/raaidd/10.2174/0127724344367073251106200403
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test