Skip to content
2000
Volume 13, Issue 3
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background: Tamoxifen is widely administered for patients with estrogen receptor-positive breast cancer. Despite many patients benefiting from Tamoxifen as an effective anti-hormonal agent in adjuvant therapy, a noticeable number of patients tend to develop resistance. Objective: The aim of this study was to shed light upon the molecular mechanisms associated with Tamoxifen resistance which can help improve current treatment strategies available for stimulating responsiveness and combating resistance. Methods: Relevant articles were obtained from PubMed and google scholar, nearly all dated from 2010 to 2017. Articles were screened to select the ones meeting the objective. The molecular interactions in the resistant network were extracted from the appropriate articles. Results: The mechanisms of developing Tamoxifen resistance were briefly outlined. Overactivation of Receptor Tyrosine Kinases (RTKs) pathways, commonly known as alternative growth cascades, is one of the main players in acquired cancer cell stemness, which can induce unrestricted proliferation in the presence of Tamoxifen. There are seven recent patents including 6291496B1 as an anti-HER2, 8143226B2 as an inhibitor of RTK phosphorylation, 9062308B2 as an anti-HOXB7, Lapatinib functioning as an anti-EGFR/HER2, Everolimus as an inhibitor of mTOR, Exemestane as an aromatase inhibitor and Perifosine as an AKT inhibitor. Conclusion: Altogether, it seems that tumor cells express a stemness phenotype which tends to override anti-hormonal adjuvant therapies. Since RTKs are overactivated and overexpressed in such cells, specialized targeted therapies suppressing RTKs would be a novel and effective way in restoring Tamoxifen sensitivity in resistant breast cancer tumor cells.

Loading

Article metrics loading...

/content/journals/pra/10.2174/1574892813666180305164634
2018-08-01
2025-10-01
Loading full text...

Full text loading...

/content/journals/pra/10.2174/1574892813666180305164634
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test