Skip to content
2000
Volume 1, Issue 1
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Poly(ADP-ribose) polymerases (PARPs) are defined as a family of cell signaling enzymes present in eukaryotes, which are involved in poly(ADP-ribosylation) of DNA-binding proteins. The best studied of these enzymes (PARP-1) is involved in the cellular response to DNA damage so that in the event of irreparable DNA damage overactivation of PARP-1 leads to necrotic cell death. Inhibitors of PARP-1 activity in combination with DNA-binding antitumor drugs may constitute a suitable strategy in cancer chemotherapy. When DNA is moderately damaged, PARP-1 participates in the DNA repair process and the cell survives. However, in the case of extensive DNA damage PARP-1 overactivation induces a decrease of NAD+ and ATP levels leading to cell dysfunction or even to necrotic cell death. So, due to PARP-1 involvement in cell death, pharmacological inhibition of PARP-1 activity by PARP-1 inhibitors may constitute a suitable target to enhance the activity of antitumor drugs through inhibition of necrosis and activation of apoptosis. PARP-1 inhibitors such as 3-aminobenzamide, 1,5-dihydroxyisoquinolinone and the recently patented tryciclic benzimidazoles have shown potent inhibitory effects of PARP-1 activity in tumor cells. The present review gives an update of the state-of-the-art of inhibition of PARP-1 activity as adjuvant therapy in cancer treatment.

Loading

Article metrics loading...

/content/journals/pra/10.2174/157489206775246430
2006-01-01
2025-10-03
Loading full text...

Full text loading...

/content/journals/pra/10.2174/157489206775246430
Loading

  • Article Type:
    Research Article
Keyword(s): cancer; chemotherapy; inhibitors; PARP-1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test