Skip to content
2000
image of Advances in Artemisinin-based Therapies: Innovations in Synthesis, Drug Delivery, and Expanding Therapeutic Applications

Abstract

Artemisinin, a natural compound derived from , has significantly impacted the treatment of malaria and has shown promise in various other therapeutic applications. This review explores the molecular structure of artemisinin and its derivatives, as well as advancements in synthetic and semi-synthetic production methods, and their broader therapeutic effects beyond malaria, including potential uses in cancer, neurological disorders, and viral infections. It also discusses contemporary drug delivery innovations, such as nanoparticles and liposomal systems, which aim to enhance the bioavailability and targeted action of artemisinin, while addressing issues of drug resistance, particularly in parasitic diseases like malaria. The future of artemisinin research is expected to focus on the development of novel derivatives and innovative formulations that leverage nanomedicine, with significant implications for global health and improved therapeutic efficacy.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928394599250827093709
2025-09-03
2025-11-13
Loading full text...

Full text loading...

References

  1. Tripathy S. Mangoato I. Dassarma B. Rauf A. Shah S.U.A. Chabalala H. Herbal and traditional medicine practices against viral infections: perspectives against COVID-19. Sustain uses prospect med. Plants 2023 75 89 10.1201/9781003206620‑6
    [Google Scholar]
  2. Gilman N.V. Analysis for Science Librarians of the 2015 Nobel Prize in Physiology or Medicine: The Life and Work of William C. Campbell, Satoshi Ōmura, and Youyou Tu. Sci. Technol. Libr. 2016 35 1 35 58 10.1080/0194262X.2016.1154493
    [Google Scholar]
  3. Hanboonkunupakarn B. White N.J. Advances and roadblocks in the treatment of malaria. Br. J. Clin. Pharmacol. 2022 88 2 374 382 10.1111/bcp.14474 32656850
    [Google Scholar]
  4. Weathers P.J. Artemisinin as a therapeutic vs. its more complex Artemisia source material. Nat. Prod. Rep. 2023 40 7 1158 1169 10.1039/D2NP00072E 36541391
    [Google Scholar]
  5. Claro A.E. Palanza C. Mazza M. Schuenemann G.E.U.M. Rigoni M. Pontecorvi A. Historical use of medicinal plants and future potential from phytotherapy to phitochemicals. Ann. Bot. 2024 14 1 127 156
    [Google Scholar]
  6. van der Pluijm R.W. Amaratunga C. Dhorda M. Dondorp A.M. Triple artemisinin-based combination therapies for malaria–a new paradigm? Trends Parasitol. 2021 37 1 15 24 10.1016/j.pt.2020.09.011 33060063
    [Google Scholar]
  7. Okombo J. Fidock D.A. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat. Rev. Microbiol. 2025 23 3 178 191 39367132
    [Google Scholar]
  8. Asmaey M.A. Hamed A. Shaaban M. Natural peroxides from plants: historical discovery, biosynthesis, and biological activities. Chem. Biodivers. 2024 21 10 e202400644 10.1002/cbdv.202400644 38958342
    [Google Scholar]
  9. Devi S. Negi S. Tandel N. Dalai S.K. Tyagi R.K. Oleuropein: a viable therapeutic option for malaria and cancer. Drug Discov. Today 2025 30 1 104254 10.1016/j.drudis.2024.104254 39608487
    [Google Scholar]
  10. Qamar F. Ashrafi K. Singh A. Dash P.K. Abdin M.Z. Artemisinin production strategies for industrial scale: Current progress and future directions. Ind. Crops Prod. 2024 218 118937 10.1016/j.indcrop.2024.118937
    [Google Scholar]
  11. Zhang W. Wei Q. Information system of attributes and functions of Chinese herbal medicines. Network 2023 8 27 63
    [Google Scholar]
  12. Soni R. Shankar G. Mukhopadhyay P. Gupta V. A concise review on Artemisia annua L.: A major source of diverse medicinal compounds. Ind. Crops Prod. 2022 184 115072 10.1016/j.indcrop.2022.115072
    [Google Scholar]
  13. Gumisiriza H. Olet E.A. Mukasa P. Lejju J.B. Omara T. Ethnomedicinal plants used for malaria treatment in Rukungiri District, Western Uganda. Trop. Med. Health 2023 51 1 49 10.1186/s41182‑023‑00541‑9 37644587
    [Google Scholar]
  14. Abdulraheem M.A. Ernest M. Ugwuanyi I. High prevalence of Plasmodium malariae and Plasmodium ovale in co-infections with Plasmodium falciparum in asymptomatic malaria parasite carriers in southwestern Nigeria. Int. J. Parasitol. 2022 52 1 23 33 10.1016/j.ijpara.2021.06.003 34390743
    [Google Scholar]
  15. Reghunandanan K. Chandramohanadas R. Chemically induced phenotypes during the blood stage development of Plasmodium falciparum as indicators of the drug mode of action. Front Drug Discov (Lausanne) 2022 2 920850 10.3389/fddsv.2022.920850
    [Google Scholar]
  16. Sawyer BJ Khan MIH Le HV Antimalarial drugs, Med Chem chemother agents 2023 363 96
  17. Patel O.P.S. Beteck R.M. Legoabe L.J. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur. J. Med. Chem. 2021 213 113193 10.1016/j.ejmech.2021.113193 33508479
    [Google Scholar]
  18. Çapcı A. Herrmann L. Sampath Kumar H.M. Fröhlich T. Tsogoeva S.B. Artemisinin‐derived dimers from a chemical perspective. Med. Res. Rev. 2021 41 6 2927 2970 10.1002/med.21814 34114227
    [Google Scholar]
  19. Lyu H.N. Ma N. Meng Y. Study towards improving artemisinin-based combination therapies. Nat. Prod. Rep. 2021 38 7 1243 1250 10.1039/D0NP00079E 34287440
    [Google Scholar]
  20. Yang J. He Y. Li Y. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol. Ther. 2020 216 107697 10.1016/j.pharmthera.2020.107697 33035577
    [Google Scholar]
  21. Park H. Otte A. Park K. Evolution of drug delivery systems: From 1950 to 2020 and beyond. J. Control. Release 2022 342 53 65 10.1016/j.jconrel.2021.12.030 34971694
    [Google Scholar]
  22. Schäfer T.M. Pessanha de Carvalho L. Inoue J. Kreidenweiss A. Held J. The problem of antimalarial resistance and its implications for drug discovery. Expert Opin. Drug Discov. 2024 19 2 209 224 10.1080/17460441.2023.2284820 38108082
    [Google Scholar]
  23. de Villiers K.A. Egan T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res. 2021 54 11 2649 2659 10.1021/acs.accounts.1c00154 33982570
    [Google Scholar]
  24. Aslam MO Alkurbi S Alghamdi Q Aalm, Plasmodium falciparum: transporter and drug target Drug targets plasmodium falciparum hist to futur perspect 2024 121 41 10.1007/978‑981‑19‑4484‑0_7
    [Google Scholar]
  25. Sharma B. Agarwal A. Awasthi S.K. Is structural hybridization invoking new dimensions for antimalarial drug discovery research? RSC Med Chem 2023 14 7 1227 1253 10.1039/D3MD00083D 37484560
    [Google Scholar]
  26. Thakur V. Food vacuole as a drug target. Drug targets plasmodium falciparum hist to futur perspect 2024 183 99 10.1007/978‑981‑19‑4484‑0_10
    [Google Scholar]
  27. Schultz F. Osuji O.F. Nguyen A. Pharmacological assessment of the antiprotozoal activity, cytotoxicity and genotoxicity of medicinal plants used in the treatment of Malaria in the greater Mpigi Region in Uganda. Front. Pharmacol. 2021 12 678535 10.3389/fphar.2021.678535 34276369
    [Google Scholar]
  28. Yang J. Wang Y. Guan W. Spiral molecules with antimalarial activities: A review. Eur. J. Med. Chem. 2022 237 114361 10.1016/j.ejmech.2022.114361 35461019
    [Google Scholar]
  29. Liu M. Lu Y. Zhao J. Artemisinin and salinomycin co-loaded nanozymes to boost cascade ROS accumulation for augmented tumor ferroptosis. Colloids Surf. B Biointerfaces 2025 245 114352 10.1016/j.colsurfb.2024.114352 39500100
    [Google Scholar]
  30. Pal C. Redox modulating small molecules having antimalarial efficacy. Biochem. Pharmacol. 2023 218 115927 10.1016/j.bcp.2023.115927 37992998
    [Google Scholar]
  31. Nandi S. Ahmed S. Saxena A.K. Exploring the role of antioxidants to combat oxidative stress in malaria Parasites. Curr. Top. Med. Chem. 2022 22 24 2029 2044 10.2174/1568026622666220405121643 35382719
    [Google Scholar]
  32. Adegboro A.G. Afolabi I.S. Molecular mechanisms of mitochondria-mediated ferroptosis: a potential target for antimalarial interventions. Front. Cell Dev. Biol. 2024 12 1374735 10.3389/fcell.2024.1374735 38660623
    [Google Scholar]
  33. Lakhani I Sharma G Alim H Ali A Patel N Antioxidants from antimalarial plants and their applications. Antimalar Med plants 2024 128 40 10.1201/9781003378396‑7
    [Google Scholar]
  34. Kumari N. Bajwa, malaria therapeutic paradigm: an evolution towards commercial drug delivery technology. Curr. Treat. Options Infect. Dis. 2024 1 16
    [Google Scholar]
  35. Abreu J.L. Artemisia annua + Zinc for the Treatment of COVID-19 A Potential Successful Combination Therapy with Ivermectin. Daena Int J Good Conscience 2021 16 2 1 41
    [Google Scholar]
  36. Egwu C.O. Augereau J.M. Reybier K. Benoit-Vical F. Reactive oxygen species as the brainbox in malaria treatment. Antioxidants 2021 10 12 1872 10.3390/antiox10121872 34942976
    [Google Scholar]
  37. Pawłowska M. Mila-Kierzenkowska C. Szczegielniak J. Woźniak A. Oxidative stress in parasitic diseases—reactive oxygen species as mediators of interactions between the host and the parasites. Antioxidants 2023 13 1 38 10.3390/antiox13010038 38247462
    [Google Scholar]
  38. Desure S. Mallika A. Roy M. Jyoti A. Kaushik S. Srivastava V.K. The flip side of reactive oxygen species in the tropical disease‐Amoebiasis. Chem. Biol. Drug Des. 2021 98 5 930 942 10.1111/cbdd.13950 34519164
    [Google Scholar]
  39. Bhide A.R. Suri M. Katnoria S. Evaluation of pharmacokinetics, biodistribution, and antimalarial efficacy of artemether-loaded polymeric nanorods. Mol. Pharm. 2023 20 1 118 127 10.1021/acs.molpharmaceut.2c00507 36384279
    [Google Scholar]
  40. Mottini C Napolitano F Li Z Gao X Cardone L Computer-aided drug repurposing for cancer therapy: approaches and opportunities to challenge anticancer targets. 2021 10.1016/j.semcancer.2019.09.023
    [Google Scholar]
  41. Al-Maqtari Q.A. Othman N. Mohammed J.K. Comparative analysis of the nutritional, physicochemical, and bioactive characteristics of Artemisia abyssinica and Artemisia arborescens for the evaluation of their potential as ingredients in functional foods. Food Sci. Nutr. 2024 12 10 8255 8279 10.1002/fsn3.4431 39479604
    [Google Scholar]
  42. Nabi N. Singh S. Saffeullah P. An updated review on distribution, biosynthesis and pharmacological effects of artemisinin: A wonder drug. Phytochemistry 2023 214 113798 10.1016/j.phytochem.2023.113798 37517615
    [Google Scholar]
  43. Hanboonkunupakarn B. Tarning J. Pukrittayakamee S. Chotivanich K. Artemisinin resistance and malaria elimination: Where are we now? Front. Pharmacol. 2022 13 876282 10.3389/fphar.2022.876282 36210819
    [Google Scholar]
  44. Pernaute-Lau L. Camara M. Nóbrega de Sousa T. Morris U. Ferreira M.U. Gil J.P. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin. Drug Metab. Toxicol. 2022 18 1 39 59 10.1080/17425255.2022.2049235 35285373
    [Google Scholar]
  45. Dai X. Zhang X. Chen W. Dihydroartemisinin: a potential natural anticancer drug. Int. J. Biol. Sci. 2021 17 2 603 622 10.7150/ijbs.50364 33613116
    [Google Scholar]
  46. Dong Y. Sonawane Y. Maher S.P. Metabolic, pharmacokinetic, and activity profile of the liver stage antimalarial (RC-12). ACS Omega 2022 7 14 12401 12411 10.1021/acsomega.2c01099 35449901
    [Google Scholar]
  47. Efferth T. Oesch F. The immunosuppressive activity of artemisinin‐type drugs towards inflammatory and autoimmune diseases. Med. Res. Rev. 2021 41 6 3023 3061 10.1002/med.21842 34288018
    [Google Scholar]
  48. Mancuso R.I. Foglio M.A. Olalla Saad S.T. Artemisinin-type drugs for the treatment of hematological malignancies. Cancer Chemother. Pharmacol. 2021 87 1 1 22 10.1007/s00280‑020‑04170‑5 33141328
    [Google Scholar]
  49. Pradhan S. Mishra A. Sahoo S. Artemisinin based nanomedicine for therapeutic applications: recent advances and challenges, Pharmacol. Pharmacol Res Mod Chin Med 2022 2 100064 10.1016/j.prmcm.2022.100064
    [Google Scholar]
  50. B J M BM, Chanda K. M BM, Chanda K. An overview on the therapeutics of neglected infectious diseases—leishmaniasis and Chagas diseases. Front Chem. 2021 9 622286 10.3389/fchem.2021.622286 33777895
    [Google Scholar]
  51. Maldonado E. Rojas D.A. Morales S. Miralles V. Solari A. Dual and opposite roles of reactive oxygen species (ROS) in Chagas disease: beneficial on the pathogen and harmful on the host. Oxid. Med. Cell. Longev. 2020 2020 1 1 17 10.1155/2020/8867701 33376582
    [Google Scholar]
  52. Raj S. Sasidharan S. Balaji S.N. Dubey V.K. Saudagar P. Review on natural products as an alternative to contemporary anti-leishmanial therapeutics. J Proteins Proteom 2020 11 2 135 158 10.1007/s42485‑020‑00035‑w
    [Google Scholar]
  53. El Sayed A.M. Egbuna C. Novel Bioactive Lead Compounds for Drug Discovery Against Neglected Tropical Diseases, Leishmaniasis, Lymphatic Filariasis, Trypanosomiasis (African Sleeping Sickness and Chagas Disease), and Schistosomiasis. Neglected Tropical Diseases and Phytochemicals in Drug Discovery 2021 75 134
    [Google Scholar]
  54. Elgendy D.I. Elmahy R.A. Amer A.I.M. Efficacy of artemether against toxocariasis in mice: parasitological and immunopathological changes in brain, liver, and lung. Pathog. Glob. Health 2024 118 1 47 64 10.1080/20477724.2023.2285182 37978995
    [Google Scholar]
  55. Kiani B.H. Kayani W.K. Khayam A.U. Dilshad E. Ismail H. Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol. Biol. Rep. 2020 47 8 6321 6336 10.1007/s11033‑020‑05669‑z 32710388
    [Google Scholar]
  56. Zeng Z. Chen D. Chen L. He B. Li Y. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. Eur. J. Med. Chem. 2023 247 115000 10.1016/j.ejmech.2022.115000 36538859
    [Google Scholar]
  57. Shi Q. Xia F. Wang Q. Discovery and repurposing of artemisinin. Front. Med. 2022 16 1 1 9 10.1007/s11684‑021‑0898‑6 35290595
    [Google Scholar]
  58. Li Y. Zhou X. Liu J. Yuan X. He Q. Therapeutic potentials and mechanisms of artemisinin and its derivatives for tumorigenesis and metastasis. Anticancer. Agents Med. Chem. 2020 20 5 520 535 10.2174/1871520620666200120100252
    [Google Scholar]
  59. Castaneda M. den Hollander P. Kuburich N.A. Rosen J.M. Mani S.A. Mechanisms of cancer metastasis. Seminars in Cancer Biology 2022 87 17 31 10.1016/j.semcancer.2022.10.006
    [Google Scholar]
  60. Xu C. Zhang H. Mu L. Yang X. Artemisinins as anticancer drugs: Novel therapeutic approaches, molecular mechanisms, and clinical trials. Front. Pharmacol. 2020 11 529881 10.3389/fphar.2020.529881 33117153
    [Google Scholar]
  61. Adoke Y. Zoleko-Manego R. Ouoba S. A randomized, double-blind, phase 2b study to investigate the efficacy, safety, tolerability and pharmacokinetics of a single-dose regimen of ferroquine with artefenomel in adults and children with uncomplicated Plasmodium falciparum malaria. Malar. J. 2021 20 1 222 10.1186/s12936‑021‑03749‑4 34011358
    [Google Scholar]
  62. Wong K.C.W. Johnson D. Hui E.P. Lam R.C.T. Ma B.B.Y. Chan A.T.C. Opportunities and challenges in combining immunotherapy and radiotherapy in head and neck cancers. Cancer Treat. Rev. 2022 105 102361 10.1016/j.ctrv.2022.102361 35231870
    [Google Scholar]
  63. Jiang Z. Wang Z. Chen L. Artesunate induces ER-derived-ROS-mediated cell death by disrupting labile iron pool and iron redistribution in hepatocellular carcinoma cells. Am. J. Cancer Res. 2021 11 3 691 711 33791148
    [Google Scholar]
  64. Wunderlich J. Kotov V. Votborg-Novél L. Iron transport pathways in the human malaria parasite Plasmodium falciparum revealed by RNA-sequencing. Front. Cell. Infect. Microbiol. 2024 14 1480076 10.3389/fcimb.2024.1480076 39575308
    [Google Scholar]
  65. Hu Y. Guo N. Yang T. Yan J. Wang W. Li X. The potential mechanisms by which artemisinin and its derivatives induce ferroptosis in the treatment of cancer. Oxid. Med. Cell. Longev. 2022 2022 1 1458143 10.1155/2022/1458143 35028002
    [Google Scholar]
  66. Cheong D.H.J. Tan D.W.S. Wong F.W.S. Tran T. Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases. Pharmacol. Res. 2020 158 104901 10.1016/j.phrs.2020.104901 32405226
    [Google Scholar]
  67. Koračak L. Lupšić E. Jovanović N.T. Novel artesunate–pyrimidine-based hybrids with anticancer potential against multidrug-resistant cancer cells. New J. Chem. 2023 47 14 6844 6855 10.1039/D3NJ00427A
    [Google Scholar]
  68. Huang B. Zhang Y. Teaching an old dog new tricks: Drug discovery by repositioning natural products and their derivatives. Drug Discov. Today 2022 27 7 1936 1944 10.1016/j.drudis.2022.02.007 35182736
    [Google Scholar]
  69. Ali H.S. Mishra S. Natural products as antiparasitic, antifungal, and antibacterial agents. Drugs from Nature: Targets. Assay Systems and Leads 2024 367 409 10.1007/978‑981‑99‑9183‑9_14
    [Google Scholar]
  70. Liang X. Chen D. Wang J. Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development. Int. J. Oral Sci. 2023 15 1 40 10.1038/s41368‑023‑00245‑0 37699886
    [Google Scholar]
  71. Fermentative Production of Secondary Metabolites from Bioengineered Fungal Species and Their Applications Fungal Biotechnology and Bioengineeri 2020 255 79
    [Google Scholar]
  72. Zhang C.W. Zhong X.J. Zhao Y.S. Antifungal natural products and their derivatives: A review of their activity and mechanism of actions. Pharmacol Res Mod Chin Med 2023 7 100262 10.1016/j.prmcm.2023.100262
    [Google Scholar]
  73. Zhou J. Li J. Cheong I. Liu N.N. Wang H. Evaluation of artemisinin derivative artemether as a fluconazole potentiator through inhibition of Pdr5. Bioorg. Med. Chem. 2021 44 116293 10.1016/j.bmc.2021.116293 34243044
    [Google Scholar]
  74. Engle K. Kumar G. Tackling multi-drug resistant fungi by efflux pump inhibitors. Biochem. Pharmacol. 2024 226 116400 10.1016/j.bcp.2024.116400 38945275
    [Google Scholar]
  75. Azmi W.A. Rizki A.F.M. Djuardi Y. Artika I.M. Siregar J.E. Molecular insights into artemisinin resistance in Plasmodium falciparum: An updated review. Infect. Genet. Evol. 2023 112 105460 10.1016/j.meegid.2023.105460 37269964
    [Google Scholar]
  76. Zhu P. Yue C. Zeng X. Chen X. Artemisinin targets transcription factor PDR1 and impairs Candida glabrata mitochondrial function. Antioxidants 2022 11 10 1855 10.3390/antiox11101855 36290580
    [Google Scholar]
  77. Bachar S.C. Mazumder K. Bachar R. Aktar A. Al Mahtab M. A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front. Pharmacol. 2021 12 732891 10.3389/fphar.2021.732891 34819855
    [Google Scholar]
  78. Fuzimoto A.D. An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment. J. Integr. Med. 2021 19 5 375 388 10.1016/j.joim.2021.07.003 34479848
    [Google Scholar]
  79. Guan L. Wang H. Xu X. Fan H. Therapeutical utilization and repurposing of artemisinin and its derivatives: A narrative review. Adv. Biol. 2023 7 8 2300086 10.1002/adbi.202300086 37178448
    [Google Scholar]
  80. Serna-Arbeláez M.S. Florez-Sampedro L. Orozco L.P. Ramírez K. Galeano E. Zapata W. Natural products with inhibitory activity against human immunodeficiency virus type 1. Adv. Virol. 2021 2021 1 22 10.1155/2021/5552088 34194504
    [Google Scholar]
  81. Rosenthal M.R. Ng C.L. Plasmodium falciparum artemisinin resistance: the effect of heme, protein damage, and parasite cell stress response. ACS Infect. Dis. 2020 6 7 1599 1614 10.1021/acsinfecdis.9b00527 32324369
    [Google Scholar]
  82. Guo Y. Ma A. Wang X. Research progress on the antiviral activities of natural products and their derivatives: Structure–activity relationships. Front Chem. 2022 10 1005360 10.3389/fchem.2022.1005360 36311429
    [Google Scholar]
  83. Liu X. Xie W. Zhou H. Zhang H. Jin Y. A comprehensive overview on antiviral effects of baicalein and its glucuronide derivative baicalin. J. Integr. Med. 2024 22 6 621 636 10.1016/j.joim.2024.09.003 39368944
    [Google Scholar]
  84. Patra S. Pareek D. Gupta P.S. Progress in treatment and diagnostics of infectious disease with polymers. ACS Infect. Dis. 2024 10 2 287 316 10.1021/acsinfecdis.3c00528 38237146
    [Google Scholar]
  85. Piret J. Boivin G. Antiviral drugs against herpesviruses. Adv. Exp. Med. Biol. 2021 1322 1 30
    [Google Scholar]
  86. Orege J.I. Adeyemi S.B. Tiamiyu B.B. Akinyemi T.O. Ibrahim Y.A. Orege O.B. Artemisia and Artemisia-based products for COVID-19 management: current state and future perspective. Advances in Traditional Medicine 2023 23 1 85 96 10.1007/s13596‑021‑00576‑5
    [Google Scholar]
  87. Lewis J. Gregorian T. Portillo I. Goad J. Drug interactions with antimalarial medications in older travelers: a clinical guide. J. Travel Med. 2020 27 1 taz089 10.1093/jtm/taz089 31776555
    [Google Scholar]
  88. Prathapan P. Magic bullets, magic shields, and antimicrobials in between. Pharmaceutical Science Advances 2023 1 1 100002 10.1016/j.pscia.2022.100002
    [Google Scholar]
  89. Gu J. Xu Y. Hua D. Chen Z. Role of artesunate in autoimmune diseases and signaling pathways. Immunotherapy 2023 15 14 1183 1193 10.2217/imt‑2023‑0052 37431601
    [Google Scholar]
  90. Long Z. Xiang W. Xiao W. Advances in the study of artemisinin and its derivatives for the treatment of rheumatic skeletal disorders, autoimmune inflammatory diseases, and autoimmune disorders: a comprehensive review. Front. Immunol. 2024 15 1432625 10.3389/fimmu.2024.1432625 39524446
    [Google Scholar]
  91. Gao X. Lin X. Wang Q. Chen J. Artemisinins: Promising drug candidates for the treatment of autoimmune diseases. Med. Res. Rev. 2024 44 2 867 891 10.1002/med.22001 38054758
    [Google Scholar]
  92. Xie K. Li Z. Zhang Y. Wu H. Zhang T. Wang W. Artemisinin and its derivatives as promising therapies for autoimmune diseases. Heliyon 2024 10 7 e27972 10.1016/j.heliyon.2024.e27972 38596057
    [Google Scholar]
  93. Liao J. He Q. Huang Z. Network pharmacology-based strategy to investigate the mechanisms of artemisinin in treating primary Sjögren’s syndrome. BMC Immunol. 2024 25 1 16 10.1186/s12865‑024‑00605‑3 38347480
    [Google Scholar]
  94. Dudley A.C. Griffioen A.W. Pathological angiogenesis: mechanisms and therapeutic strategies. Angiogenesis 2023 26 3 313 347 10.1007/s10456‑023‑09876‑7 37060495
    [Google Scholar]
  95. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  96. Wang P. Tian X. Tang J. Artemisinin protects endothelial function and vasodilation from oxidative damage via activation of PI3K/Akt/eNOS pathway. Exp. Gerontol. 2021 147 111270 10.1016/j.exger.2021.111270 33556535
    [Google Scholar]
  97. Gao P. Wang L. Liu J. Dihydroartemisinin inhibits endothelial cell tube formation by suppression of the STAT3 signaling pathway. Life Sci. 2020 242 117221 10.1016/j.lfs.2019.117221 31881224
    [Google Scholar]
  98. Nehra B. Rulhania S. Jaswal S. Kumar B. Singh G. Monga V. Recent advancements in the development of bioactive pyrazoline derivatives. Eur. J. Med. Chem. 2020 205 112666 10.1016/j.ejmech.2020.112666 32795767
    [Google Scholar]
  99. Yasin Z.N.M. Zakaria M.A. Zin N.N.I.N.M. Ibrahim N. Sofia F. Asian Journal of Medicine and Biomedicine. Biomedicine n.d. 4 1 78 88
    [Google Scholar]
  100. Ren Y. Kinghorn A.D. Development of potential antitumor agents from the scaffolds of plant-derived terpenoid lactones. J. Med. Chem. 2020 63 24 15410 15448 10.1021/acs.jmedchem.0c01449 33289552
    [Google Scholar]
  101. Liu K. Zuo H. Li G. Yu H. Hu Y. Global research on artemisinin and its derivatives: Perspectives from patents. Pharmacol. Res. 2020 159 105048 10.1016/j.phrs.2020.105048 32590098
    [Google Scholar]
  102. Tsui K.H. Wu M.Y. Lin L.T. Disruption of mitochondrial homeostasis with artemisinin unravels anti-angiogenesis effects via auto-paracrine mechanisms. Theranostics 2019 9 22 6631 6645 10.7150/thno.33353 31588240
    [Google Scholar]
  103. Tong X. Chen L. He S. Zuo J. Artemisinin derivative SM934 in the treatment of autoimmune and inflammatory diseases: therapeutic effects and molecular mechanisms. Acta Pharmacol. Sin. 2022 43 12 3055 3061 10.1038/s41401‑022‑00978‑4 36050518
    [Google Scholar]
  104. Li Q. Rubin L. Silva M. Current progress on neuroprotection induced by Artemisia, Ginseng, Astragalus, and Ginkgo traditional Chinese medicines for the therapy of Alzheimer’s disease. Oxid. Med. Cell. Longev. 2022 2022 1 3777021 10.1155/2022/3777021 35746960
    [Google Scholar]
  105. Gao Y. Cui M. Zhong S. Dihydroartemisinin ameliorates LPS-induced neuroinflammation by inhibiting the PI3K/AKT pathway. Metab. Brain Dis. 2020 35 4 661 672 10.1007/s11011‑020‑00533‑2 32152798
    [Google Scholar]
  106. Liu J. Li T. Zhong G. Exploring the therapeutic potential of natural compounds for Alzheimer’s disease: Mechanisms of action and pharmacological properties. Biomed. Pharmacother. 2023 166 115406 10.1016/j.biopha.2023.115406 37659206
    [Google Scholar]
  107. Machín L. Nápoles R. Gille L. Monzote L. Leishmania amazonensis response to artemisinin and derivatives. Parasitol. Int. 2021 80 102218 10.1016/j.parint.2020.102218 33137506
    [Google Scholar]
  108. Solano-Gálvez S.G. Gutiérrez-Kobeh L. Wilkins-Rodríguez A.A. Vázquez-López R. Artemisinin: An Anti-Leishmania Drug that Targets the Leishmania Parasite and Activates Apoptosis of Infected Cells. Arch. Med. Res. 2024 55 6 103041 10.1016/j.arcmed.2024.103041 38996535
    [Google Scholar]
  109. Zhang X. Li N. Zhang G. Nano strategies for artemisinin derivatives to enhance reverse efficiency of multidrug resistance in breast cancer. Curr. Pharm. Des. 2023 29 43 3458 3466 10.2174/0113816128282248231205105408 38270162
    [Google Scholar]
  110. Deshmukh R. Exploring the potential of antimalarial nanocarriers as a novel therapeutic approach. J. Mol. Graph. Model. 2023 122 108497 10.1016/j.jmgm.2023.108497 37149980
    [Google Scholar]
  111. Farhat M. Cox H. Ghanem M. Drug-resistant tuberculosis: a persistent global health concern. Nat. Rev. Microbiol. 2024 22 10 617 635 10.1038/s41579‑024‑01025‑1 38519618
    [Google Scholar]
  112. Campaniço A. Harjivan S.G. Warner D.F. Moreira R. Lopes F. Addressing latent tuberculosis: New advances in mimicking the disease, discovering key targets, and designing hit compounds. Int. J. Mol. Sci. 2020 21 22 8854 10.3390/ijms21228854 33238468
    [Google Scholar]
  113. Duffey M. Shafer R.W. Timm J. Combating antimicrobial resistance in malaria, HIV and tuberculosis. Nat. Rev. Drug Discov. 2024 23 6 461 479 10.1038/s41573‑024‑00933‑4 38750260
    [Google Scholar]
  114. Peraman R. Sure S.K. Dusthackeer V.N.A. Insights on recent approaches in drug discovery strategies and untapped drug targets against drug resistance. Future J Pharm Sci 2021 7 1 56 10.1186/s43094‑021‑00196‑5 33686369
    [Google Scholar]
  115. Zhang B. Artemisinin‐derived dimers as potential anticancer agents: Current developments, action mechanisms, and structure–activity relationships. Arch. Pharm. (Weinheim) 2020 353 2 1900240 10.1002/ardp.201900240 31797422
    [Google Scholar]
  116. Sarkar D. De Sarkar S. Gille L. Chatterjee M. Ascaridole exerts the leishmanicidal activity by inhibiting parasite glycolysis. Phytomedicine 2022 103 154221 10.1016/j.phymed.2022.154221 35696799
    [Google Scholar]
  117. Tiwari M.K. Chaudhary S. Artemisinin‐derived antimalarial endoperoxides from bench‐side to bed‐side: Chronological advancements and future challenges. Med. Res. Rev. 2020 40 4 1220 1275 10.1002/med.21657 31930540
    [Google Scholar]
  118. Woodley C.M. Amado P.S.M. Cristiano M.L.S. O’Neill P.M. Artemisinin inspired synthetic endoperoxide drug candidates: Design, synthesis, and mechanism of action studies. Med. Res. Rev. 2021 41 6 3062 3095 10.1002/med.21849 34355414
    [Google Scholar]
  119. Achilonu C.F. Okoro U.C. Achilonu M.C. Onoyima S.C. Synthesis of Novel Phenylalanine Carboxamides Derivatives Bearing Sulfonamides Functionality and Their Molecular Docking, In Vitro Antimalarial, and Antioxidant Properties. ChemistrySelect 2024 9 44 e202403267 10.1002/slct.202403267
    [Google Scholar]
  120. Yang J. Li K. He D. Toward a better understanding of metabolic and pharmacokinetic characteristics of low-solubility, low-permeability natural medicines. Drug Metab. Rev. 2020 52 1 19 43 10.1080/03602532.2020.1714646 31984816
    [Google Scholar]
  121. Huang L. Luo S. Tong S. Lv Z. Wu J. The development of nanocarriers for natural products. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 3 e1967 10.1002/wnan.1967 38757428
    [Google Scholar]
  122. Beyraghdar Kashkooli K Farmanpour-Kalalagh K Babaei A. Yeast synthetic biology for production of artemisinin as an antimalarial drug. Synthetic Biology of Yeasts: Tools and Applications 2022 157 87 10.1007/978‑3‑030‑89680‑5_6
    [Google Scholar]
  123. Kancharla P. Li Y. Yeluguri M. Dodean R.A. Reynolds K.A. Kelly J.X. Total synthesis and antimalarial activity of 2-(p-hydroxybenzyl)-prodigiosins, isoheptylprodigiosin, and geometric isomers of tambjamine MYP1 isolated from marine bacteria. J. Med. Chem. 2021 64 12 8739 8754 10.1021/acs.jmedchem.1c00748 34111350
    [Google Scholar]
  124. Wan L. Kong G. Liu M. Jiang M. Cheng D. Chen F. Flow chemistry in the multi-step synthesis of natural products. Green Synth Catal 2022 3 3 243 258 10.1016/j.gresc.2022.07.007
    [Google Scholar]
  125. Gao S. Chen J. Peng W. The preparation and relative bioavailability of an artemisin in self-emulsifying drug delivery system. Drug Deliv. 2023 30 1 2168794 10.1080/10717544.2023.2168794 36708154
    [Google Scholar]
  126. Kumari N. Bajwa S. Ashique S. Sharma H. Mishra N. Rathore C. From Lab Bench to Bedside: Advancing Malaria Treatments through Research, Patents, and Clinical Trials. Curr. Treat. Options Infect. Dis. 2025 17 1 26
    [Google Scholar]
  127. Liu R. Luo C. Pang Z. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin. Chem. Lett. 2023 34 2 107518 10.1016/j.cclet.2022.05.032
    [Google Scholar]
  128. Li Q. Wang R. Han S. Design and Antimalarial Evaluation of Polydopamine-Modified Methyl Artelinate Nanoparticles. Mol. Pharm. 2024 21 11 5551 5564 10.1021/acs.molpharmaceut.4c00520 39378411
    [Google Scholar]
  129. Ugorji O.L. Onyishi I.V. Onwodi J.N. Adeyeye C.M. Ukachukwu U.G. Obitte N.C. Solubility enhancing lipid-based vehicles for artemether and lumefantrine destined for the possible treatment of induced malaria and inflammation: in vitro and in vivo evaluations. Beni. Suef Univ. J. Basic Appl. Sci. 2024 13 1 3 10.1186/s43088‑023‑00446‑w
    [Google Scholar]
  130. Gupta A. Kulkarni S. Soman S. Breaking barriers in cancer management: The promising role of microsphere conjugates in cancer diagnosis and therapy. Int. J. Pharm. 2024 665 124687 10.1016/j.ijpharm.2024.124687 39265846
    [Google Scholar]
  131. Alghamdi J.M. Al-Qahtani A.A. Alhamlan F.S. Al-Qahtani A.A. Recent Advances in the Treatment of Malaria. Pharmaceutics 2024 16 11 1416 10.3390/pharmaceutics16111416 39598540
    [Google Scholar]
  132. Edgar R.C.S. Counihan N.A. McGowan S. de Koning-Ward T.F. Methods used to investigate the Plasmodium falciparum digestive vacuole. Front. Cell. Infect. Microbiol. 2022 11 829823 10.3389/fcimb.2021.829823 35096663
    [Google Scholar]
  133. Knox C. Wilson M. Klinger C.M. DrugBank 6.0: the DrugBank knowledgebase for 2024. Nucleic Acids Res. 2024 52 D1 D1265 D1275 10.1093/nar/gkad976 37953279
    [Google Scholar]
  134. Maiga F.O. Wele M. Toure S.M. Artemisinin-based combination therapy for uncomplicated Plasmodium falciparum malaria in Mali: a systematic review and meta-analysis. Malar. J. 2021 20 1 356 10.1186/s12936‑021‑03890‑0 34461901
    [Google Scholar]
  135. Kumar S. Prasad Mahato R. Drug resistance and resistance reversal strategies in malaria parasite. J. Microbiol. Biotechnol. Food Sci. 2024 13 5 e10384 10.55251/jmbfs.10384
    [Google Scholar]
  136. Singh L. Singh K. Ivermectin: a promising therapeutic for fighting malaria. Current status and perspective. J. Med. Chem. 2021 64 14 9711 9731 10.1021/acs.jmedchem.1c00498 34242031
    [Google Scholar]
  137. Bhargava S. Deshmukh R. Dewangan H.K. Recent Advancement in Drug Development for Treating Malaria using Herbal Medicine and Nanotechnological Approach. Curr. Pharm. Des. 2025 31 3 203 218 10.2174/0113816128321468240828103439 39279710
    [Google Scholar]
  138. Lindblade K.A. Li Xiao H. Tiffany A. Supporting countries to achieve their malaria elimination goals: the WHO E-2020 initiative. Malar. J. 2021 20 1 481 10.1186/s12936‑021‑03998‑3 34930239
    [Google Scholar]
  139. Chaccour C. Casellas A. Hammann F. BOHEMIA: Broad One Health Endectocide-based Malaria Intervention in Africa—a phase III cluster-randomized, open-label, clinical trial to study the safety and efficacy of ivermectin mass drug administration to reduce malaria transmission in two African settings. Trials 2023 24 1 128 10.1186/s13063‑023‑07098‑2 36810194
    [Google Scholar]
  140. Oladipo H.J. Tajudeen Y.A. Oladunjoye I.O. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Ann. Med. Surg. (Lond.) 2022 81 104366 10.1016/j.amsu.2022.104366 36046715
    [Google Scholar]
  141. Visser M.T. Zonneveld R. Peto T.J. van Vugt M. Dondorp A.M. van der Pluijm R.W. Are national treatment guidelines for falciparum malaria in line with WHO recommendations and is antimalarial resistance taken into consideration? – A review of guidelines in non‐endemic countries. Trop. Med. Int. Health 2022 27 2 129 136 10.1111/tmi.13715 34978744
    [Google Scholar]
  142. Nguyen T.D. Gao B. Amaratunga C. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat. Commun. 2023 14 1 4568 10.1038/s41467‑023‑39914‑3 37516752
    [Google Scholar]
  143. Lopes E.A. Santos M.M.M. Mori M. Pharmacological treatment of malaria. Antiprotozoal Drug Dev Deliv 2021 219 240 10.1007/7355_2021_125
    [Google Scholar]
  144. Sharifi-Rad J. Herrera-Bravo J. Semwal P. Artemisia spp.: an update on its chemical composition, pharmacological and toxicological profiles. Oxid. Med. Cell. Longev. 2022 2022 1 5628601 10.1155/2022/5628601 36105486
    [Google Scholar]
  145. Hodoameda P. Duah-Quashie N.O. Quashie N.B. Assessing the Roles of Molecular Markers of Antimalarial Drug Resistance and the Host Pharmacogenetics in Drug-Resistant Malaria. J. Trop. Med. 2022 2022 1 9 10.1155/2022/3492696 35620049
    [Google Scholar]
  146. White N.J. Anti‐malarial drug effects on parasite dynamics in vivax malaria. Malar. J. 2021 20 1 161 10.1186/s12936‑021‑03700‑7 33743731
    [Google Scholar]
  147. Nguyen T.T. Nguyen X.X. Ronse M. Diagnostic practices and treatment for P. vivax in the interethnic therapeutic encounter of South-Central Vietnam: a mixed-methods study. Pathogens 2020 10 1 26 10.3390/pathogens10010026 33396538
    [Google Scholar]
  148. Siqueira-Neto J.L. Wicht K.J. Chibale K. Burrows J.N. Fidock D.A. Winzeler E.A. Antimalarial drug discovery: progress and approaches. Nat. Rev. Drug Discov. 2023 22 10 807 826 10.1038/s41573‑023‑00772‑9 37652975
    [Google Scholar]
  149. Chu C.S. Phyo A.P. Lwin K.M. Comparison of the cumulative efficacy and safety of chloroquine, artesunate, and chloroquine-primaquine in Plasmodium vivax malaria. Clin. Infect. Dis. 2018 67 10 1543 1549 10.1093/cid/ciy319 29889239
    [Google Scholar]
  150. Saito M. Mansoor R. Kennon K. Efficacy and tolerability of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: a systematic review and individual patient data meta-analysis. Lancet Infect. Dis. 2020 20 8 943 952 10.1016/S1473‑3099(20)30064‑5 32530424
    [Google Scholar]
  151. Erhunse N. Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J. Pharm. Anal. 2021 11 5 541 554 10.1016/j.jpha.2020.07.005 34765267
    [Google Scholar]
  152. Rasmussen C. Alonso P. Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev. Anti Infect. Ther. 2022 20 3 353 372 10.1080/14787210.2021.1962291 34348573
    [Google Scholar]
  153. Pandit K. Surolia N. Bhattacharjee S. Karmodiya K. The many paths to artemisinin resistance in Plasmodium falciparum. Trends Parasitol. 2023 39 12 1060 1073 10.1016/j.pt.2023.09.011 37833166
    [Google Scholar]
  154. Sharan M Vijay D Yadav JP Bedi JS Dhaka P Surveillance and response strategies for zoonotic diseases: A comprehensive review. Sci One Heal 2023 2 2023 100050
    [Google Scholar]
  155. Siraj M.A. Islam M.A. Al Fahad M.A. Kheya H.R. Xiao J. Simal-Gandara J. Cancer chemopreventive role of dietary terpenoids by modulating Keap1-Nrf2-ARE signaling system: a comprehensive update. Appl. Sci. (Basel) 2021 11 22 10806 10.3390/app112210806
    [Google Scholar]
  156. Ogieuhi I.J. Ajekiigbe V.O. Kolo-Manma K. A narrative review of the RTS S AS01 malaria vaccine and its implementation in Africa to reduce the global malaria burden. Discover Public Health 2024 21 1 152 10.1186/s12982‑024‑00284‑w
    [Google Scholar]
  157. Irache J.M. Esparza I. Gamazo C. Agüeros M. Espuelas S. Nanomedicine: Novel approaches in human and veterinary therapeutics. Vet. Parasitol. 2011 180 1-2 47 71 10.1016/j.vetpar.2011.05.028 21680101
    [Google Scholar]
  158. Couvreur P. Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm. Res. 2006 23 7 1417 1450 10.1007/s11095‑006‑0284‑8 16779701
    [Google Scholar]
  159. Santos-Magalhães N.S. Mosqueira V.C.F. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev. 2010 62 4-5 560 575 10.1016/j.addr.2009.11.024 19914313
    [Google Scholar]
  160. Nayan M.U. Sultana A. Le N.T.H. Poluektuva L.Y. Edagwa B. Gendelman H.E. Advancing long-acting formulations for treating chronic diseases. Neuroimmune Pharmacol Ther 2024 639 656 10.1007/978‑3‑031‑68237‑7_37
    [Google Scholar]
  161. de Haan F. Amaratunga C. Thi V.A.C. Strategies for deploying triple artemisinin-based combination therapy in the Greater Mekong Subregion. Malar. J. 2023 22 1 261 10.1186/s12936‑023‑04666‑4 37674172
    [Google Scholar]
  162. Rajwar T.K. Pradhan D. Halder J. Opportunity in nanomedicine to counter the challenges of current drug delivery approaches used for the treatment of malaria: a review. J. Drug Target. 2023 31 4 354 368 10.1080/1061186X.2022.2164290 36604804
    [Google Scholar]
  163. Tang R. Li R. Li H. Design of hepatic targeted drug delivery systems for natural products: insights into nomenclature revision of nonalcoholic fatty liver disease. ACS Nano 2021 15 11 17016 17046 10.1021/acsnano.1c02158 34705426
    [Google Scholar]
  164. Khatri B. Thakkar V. Dalwadi S. Preparation and in-vitro characterization of solid lipid nanoparticles containing artemisinin and curcumin. Pharm. Nanotechnol. 2025 13 1 199 211 10.2174/0122117385296893240626061552 39039683
    [Google Scholar]
  165. Delshadi R. Bahrami A. McClements D.J. Moore M.D. Williams L. Development of nanoparticle-delivery systems for antiviral agents: A review. J. Control. Release 2021 331 30 44 10.1016/j.jconrel.2021.01.017 33450319
    [Google Scholar]
  166. Wang X. Li C. Wang Y. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022 12 11 4098 4121 10.1016/j.apsb.2022.08.013 36386470
    [Google Scholar]
  167. Liu W.S. Chen Z. Lu Z.M. Multifunctional hydrogels based on photothermal therapy: A prospective platform for the postoperative management of melanoma. J. Control. Release 2024 371 406 428 10.1016/j.jconrel.2024.06.001 38849093
    [Google Scholar]
  168. Chingunpitak J. Puttipipatkhachorn S. Chavalitshewinkoon-Petmitr P. Tozuka Y. Moribe K. Yamamoto K. Formation, physical stability and in vitro antimalarial activity of dihydroartemisinin nanosuspensions obtained by co-grinding method. Drug Dev. Ind. Pharm. 2008 34 3 314 322 10.1080/03639040701662388 18363147
    [Google Scholar]
  169. Isacchi B. Bergonzi M.C. Grazioso M. Artemisinin and artemisinin plus curcumin liposomal formulations: Enhanced antimalarial efficacy against Plasmodium berghei-infected mice. Eur. J. Pharm. Biopharm. 2012 80 3 528 534 10.1016/j.ejpb.2011.11.015 22142592
    [Google Scholar]
  170. Fasan R. Zhang K-D. Artemisinin derivatives, methods for their preparation and their use as antimalarial agents. Int. J. Oral Sci. 2019 15 1 40
    [Google Scholar]
  171. Yang D. Liu J. Fan L. Zhang S. Tang X. Application of dihydroartemisinin derivative of antimalarial drug. Patent CN110448552 A 2019
    [Google Scholar]
  172. Yang D. Zhang S. Fan L. Liu J. Tang X. Meng R. Thio ether, sulfoxide and sulfone derivatives of dihydroartemisinin, and applications thereof. Patent CN110642869 A 2020
    [Google Scholar]
  173. Li X Si M Artesunate heparin derivative as well as pharmaceutical composition and application thereof. Patent CN109481692A 2019
    [Google Scholar]
  174. Bhattacharya A Aratikatla EK Malhotra P Mohmmed A Novel antimalarial compounds, process for preparation and their use for drug resistant malaria. China, Patent CN112585142A 2021
    [Google Scholar]
  175. Singh K. Gupta J.K. Chanchal D.K. Natural products as drug leads: exploring their potential in drug discovery and development. Naunyn Schmiedebergs Arch. Pharmacol. 2024 398 5 4673 4687 39621089
    [Google Scholar]
  176. Eras A. Castillo D. Suárez M. Vispo N.S. Albericio F. Rodriguez H. Chemical conjugation in drug delivery systems. Front Chem. 2022 10 889083 10.3389/fchem.2022.889083 35720996
    [Google Scholar]
  177. Gopikrishnan M. Haryini S. C GPD. Emerging strategies and therapeutic innovations for combating drug resistance in Staphylococcus aureus strains: A comprehensive review. J. Basic Microbiol. 2024 64 5 2300579 10.1002/jobm.202300579 38308076
    [Google Scholar]
  178. Alvarez M.J.R. Hasanzad M. Meybodi H.R.A. Sarhangi N. Precision medicine in infectious disease. Precis Med Clin Pract 2022 221 257 10.1007/978‑981‑19‑5082‑7_13
    [Google Scholar]
  179. Zhang Q. Yi H. Yao H. Artemisinin derivatives inhibit non-small cell lung cancer cells through induction of ROS-dependent apoptosis/ferroptosis. J. Cancer 2021 12 13 4075 4085 10.7150/jca.57054 34093811
    [Google Scholar]
  180. Gao Q. Feng J. Liu W. Opportunities and challenges for co-delivery nanomedicines based on combination of phytochemicals with chemotherapeutic drugs in cancer treatment. Adv. Drug Deliv. Rev. 2022 188 114445 10.1016/j.addr.2022.114445 35820601
    [Google Scholar]
  181. Zheng D. Liu T. Yu S. Liu Z. Wang J. Wang Y. Antimalarial mechanisms and resistance status of artemisinin and its derivatives. Trop. Med. Infect. Dis. 2024 9 9 223 10.3390/tropicalmed9090223 39330912
    [Google Scholar]
  182. Joshi G. Quadir S.S. Yadav K.S. Road map to the treatment of neglected tropical diseases: Nanocarriers interventions. J. Control. Release 2021 339 51 74 10.1016/j.jconrel.2021.09.020 34555491
    [Google Scholar]
  183. Prusty D. Gupta N. Upadhyay A. Asymptomatic malaria infection prevailing risks for human health and malaria elimination. Infect. Genet. Evol. 2021 93 104987 10.1016/j.meegid.2021.104987 34216796
    [Google Scholar]
  184. Lokole P.B. Byamungu G.G. Mutwale P.K. Plant-based nanoparticles targeting malaria management. Front. Pharmacol. 2024 15 1440116 10.3389/fphar.2024.1440116 39185312
    [Google Scholar]
/content/journals/pra/10.2174/0115748928394599250827093709
Loading
/content/journals/pra/10.2174/0115748928394599250827093709
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test