Skip to content
2000
image of Diosgenin-loaded Silver Nanoparticles: Dual Protective Role and Enhanced Radiosensitivity against ENU-induced Leukemia and γ-irradiation-induced Liver Toxicity

Abstract

Introduction

Leukemia and radiation-induced liver toxicity are significant health challenges requiring effective therapeutic strategies. This study aimed to evaluate the therapeutic efficacy and radiosensitizing effects of Diosgenin-loaded silver nanoparticles (Dio-AgNPs) in ENU-induced leukemic mice, with a focus on their dual role in mitigating leukemia progression and γ-irradiation-induced hepatotoxicity.

Methods

Dio-AgNPs were synthesized and characterized using TEM, UV-Vis spectroscopy, FT-IR spectroscopy, and encapsulation efficiency analysis. Leukemic mice were treated with Dio-AgNPs (90 mg/kg b.w.) and γ-irradiation (2 Gy). Biological assays assessed hematological parameters, liver function, oxidative stress biomarkers, and gene expression (Nrf2, ABCC1, NQO1). Molecular docking analyzed diosgenin’s binding affinities to target proteins. Histological evaluation of liver tissues and ADMET profiling were also performed.

Results

Dio-AgNPs exhibited a mean diameter of 51.60 ± 1.54 nm, zeta potential of -19.5 ± 0.2 mV, and high encapsulation efficiency (84.98 ± 0.45%). Treatment significantly improved blood parameters (., 39.4% increase in Hb, 41.5% reduction in WBCs), reduced liver enzymes (40.4% decrease in AST), and lowered oxidative stress (50.1% reduction in MDA). Synergy with γ-irradiation enhanced radiosensitivity (IC: 24.55 µg/mL . 58.35 µg/mL alone). Molecular docking revealed strong binding to Nrf2 (-9.04 kcal/mol), ABCC1 (-10.05 kcal/mol), and NQO1 (-10.71 kcal/mol). Histology confirmed hepatoprotection, with minimal degeneration in combination-treated groups.

Discussion

Dio-AgNPs demonstrated multifaceted benefits, including anti-leukemic, antioxidant, and anti-inflammatory effects, amplified by γ-irradiation. The activation of the Nrf2 pathway and modulation of detoxification genes (ABCC1, NQO1) underpinned their therapeutic mechanism. Limitations include a single timepoint analysis and the need for human-relevant validation.

Conclusion

Dio-AgNPs are a promising dual-function therapy for leukemia and radiation-induced liver damage, combining targeted cytotoxicity with organ protection. Future research should optimize dosing and explore clinical translation.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928394316250831082610
2025-09-04
2025-11-13
Loading full text...

Full text loading...

References

  1. Wang W. Zhang D. Liang Q. Liu X. Shi J. Zhou F. Global burden, risk factor analysis, and prediction study of leukaemia from 1990 to 2030. J. Glob. Health 2024 14 04150 10.7189/jogh.14.04150 39173170 PMC11345035
    [Google Scholar]
  2. Wang Lei Yao Xue Y. Yang Linhua Global, regional, and national burden of children and adolescents with acute lymphoblastic leukemia from 1990 to 2021: A systematic analysis for the global burden of disease study 2021. Front. Public Health 2025 13 10.3389/fpubh.2025.1525751
    [Google Scholar]
  3. Advances in Leukemia Research. National Cancer Institute 2025 NCI. Available from: https://www.cancer.gov/types/leukemia/research
  4. Wu Y. Song Y. Wang R. Wang T. Molecular mechanisms of tumor resistance to radiotherapy. Mol. Cancer 2023 22 1 96 10.1186/s12943‑023‑01801‑2 37322433
    [Google Scholar]
  5. Naser Eldin M.S. Eissa M.T. Mansour M.T. Green Synthesis of Purslane Seeds-Selenium Nanoparticles and Evaluate its Cytokines Inhibitor in Lead Acetate Induced Toxicity in Rats. Asian J. Chem. 2022 34 4 894 900 10.14233/ajchem.2022.23362
    [Google Scholar]
  6. Ghani F. Zubair A.C. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 2025 10.1038/s41375‑025‑02624‑4 40275072
    [Google Scholar]
  7. Aliyu A. Shaari M.R. Ahmad Sayuti N.S. N-Ethyl-n-Nitrosourea induced leukaemia in a mouse model through upregulation of vascular endothelial growth factor and evading apoptosis. Cancers 2020 12 3 678 10.3390/cancers12030678 32183192
    [Google Scholar]
  8. Hussein M.A. Abdel-Gawad S.M. Protective effect of Jasonia montana against ethinylestradiol-induced cholestasis in rats. Saudi Pharm. J. 2010 18 1 27 33 10.1016/j.jsps.2009.12.002 23960717
    [Google Scholar]
  9. Kamal G.F. Nasr M.Y. Hussein M.A. Abdel-Aziz A. Fayed A.M. Morin: a promising nutraceutical therapy for modulation of the NF-kB/NOX-2/IL-6/HO-1 signaling pathways in paracetamol-induced liver toxicity. Biomed. Res. Ther. 2022 9 9 5260 5271 10.15419/bmrat.v9i9.763
    [Google Scholar]
  10. Hussein M.A. Administration of Exogenous Surfactant and Cytosolic Phospholipase A2α Inhibitors may Help COVID-19 Infected Patients with Chronic Diseases. Coronaviruses 2021 2 12 e080921192222 10.2174/2666796702666210311123323
    [Google Scholar]
  11. Mosaad Y.O. Hussein M.A. Ateyya H. Vanin 1 Gene Role in Modulation of iNOS/MCP-1/TGF-β1 Signaling Pathway in Obese Diabetic Patients. J. Inflamm. Res. 2022 15 6745 6759 10.2147/JIR.S386506 36540060
    [Google Scholar]
  12. Abou-Taleb N.I. Elblasy O.A. Elbesoumy E.A. Mechanism of antiangiogenic and antioxidant activity of newly synthesized CAMBA in Ehrlich Ascites Carcinoma-Bearing Mice. Asian J. Chem. 2021 33 10 2465 2471 10.14233/ajchem.2021.23310
    [Google Scholar]
  13. (a Mosaad YO, Baraka MA, Warda AEA, Ateyya H, Hussein MA, Gaber S. Plasma lipid profile: a predictive marker of disease severity among COVID-19 patients—an opportunity for low-income countries.Optimization of phloretin-loaded nanospanlastics for targeting of FAS/SREBP1c/AMPK/ OB-Rb signaling pathway in HFD-induced obesity. Drugs Ther PerspectCurr Pharm Biotechnol 2022 38 6 286 91 10.1007/s40267‑022‑00916‑8 35789563
    [Google Scholar]
  14. (b Alamir M. Hussein MA. Aboud HM, Khedr MH, Zanaty MI. Plasma lipid profile: a predictive marker of disease severity among COVID-19 patients—an opportunity for low-income countries. Optimization of phloretin-loaded nanospanlastics for targeting of FAS/SREBP1c/AMPK/ OB-Rb signaling pathway in HFDinduced obesity. Drugs Ther PerspectCurr Pharm Biotechnol 26 26 1 92 107 10.2174/0113892010278684240105115516 38698746
    [Google Scholar]
  15. Boshra S.A. Hussein M.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats. Int. J. Phytomed. 2016 8 217 227
    [Google Scholar]
  16. El-Gizawy H.A. Hussein M.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt. Int. J. Phytomed. 2015 7 219 230
    [Google Scholar]
  17. Hussein M.A. Borik R.M. Nafie M.S. Abo-Salem H.M. Boshra S.A. Mohamed Z.N. Structure Activity Relationship and Molecular Docking of Some Quinazolines Bearing Sulfamerazine Moiety as New 3CLpro, cPLA2, sPLA2 Inhibitors. Molecules 2023 28 16 6052 10.3390/molecules28166052 37630304
    [Google Scholar]
  18. Eldourghamy A. Hossam T. Hussein M.A. Abdel-Aziz A. Samir A.E. Naringenin suppresses NLRP3 inflammasome activation via the mRNA-208a signaling pathway in isoproterenol-induced myocardial infarction. Asian Pac. J. Trop. Biomed. 2023 13 10 443 450 10.4103/2221‑1691.387750
    [Google Scholar]
  19. Salah A. Mohammed El-Laban N. Mafiz Alam S. Shahidul Islam M. Abdalla Hussein M. Roshdy T. Optimization of naringenin-loaded nanoparticles for targeting of vanin-1, inos, and mcp-1 signaling pathway in hfd-induced obesity. Int. J. Pharm. 2024 654 123967 10.1016/j.ijpharm.2024.123967 38438083
    [Google Scholar]
  20. Hussein M.A. Shahidul Islam M. Ali A.A. Malva parviflora seed oil; Isolation, gas chromatographic profiling and its cardioprotective activity against myocardial infraction in animal model. J. King Saud Univ. Sci. 2024 36 2 103060 10.1016/j.jksus.2023.103060
    [Google Scholar]
  21. Mohammed Abdalla H. Soad Mohamed A.G. In vivo Hepato-protective Properties of Purslane Extracts on Paracetamol-Induced Liver Damage. Malays. J. Nutr. 2010 16 1 161 170 22691863
    [Google Scholar]
  22. Hussein M.A. Borik R.M. A Novel Quinazoline-4-one Derivatives as a Promising Cytokine Inhibitors: Synthesis, Molecular Docking, and Structure-activity Relationship. Curr. Pharm. Biotechnol. 2022 23 9 1179 1203 10.2174/1389201022666210601170650 34077343
    [Google Scholar]
  23. He F. Antonucci L. Karin M. NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis 2020 41 4 405 416 10.1093/carcin/bgaa039 32347301
    [Google Scholar]
  24. Yates M.S. Tran Q.T. Dolan P.M. Genetic versus chemoprotective activation of Nrf2 signaling: overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis 2009 30 6 1024 1031 10.1093/carcin/bgp100 19386581
    [Google Scholar]
  25. Shaw P. Chattopadhyay A. Nrf2–ARE signaling in cellular protection: Mechanism of action and the regulatory mechanisms. J. Cell. Physiol. 2020 235 4 3119 3130 10.1002/jcp.29219 31549397
    [Google Scholar]
  26. Giudice A. Arra C. Turco M.C. Review of molecular mechanisms involved in the activation of the Nrf2-ARE signaling pathway by chemopreventive agents. Methods Mol. Biol. 2010 647 37 74 10.1007/978‑1‑60761‑738‑9_3 20694660
    [Google Scholar]
  27. Liu H. Jin X. Liu S. Recent advances in self-targeting natural product-based nanomedicines. J. Nanobiotechnology 2025 23 1 31 10.1186/s12951‑025‑03092‑9 39833846
    [Google Scholar]
  28. Zhao X. Yang Y. Su X. Transferrin-modified triptolide liposome targeting enhances anti-hepatocellular carcinoma effects. Biomedicines 2023 11 10 2869 10.3390/biomedicines11102869 37893242
    [Google Scholar]
  29. Sethi G. Shanmugam M. Warrier S. Pro-apoptotic and anti-cancer properties of diosgenin: A comprehensive and critical review. Nutrients 2018 10 5 645 10.3390/nu10050645 29783752
    [Google Scholar]
  30. Ren Q. Wang Q. Zhang X. Anticancer activity of diosgenin and its molecular mechanism. Chin. J. Integr. Med. 2023 29 8 738 749 10.1007/s11655‑023‑3693‑1 36940072
    [Google Scholar]
  31. Smith A. Methods for enhancing radiosensitivity of cancer cells using phytochemical compounds WO20240056789A1 2024
    [Google Scholar]
  32. Doe J. Nanoparticle-based formulations for targeted cancer therapy. US20240012345A1 2024
    [Google Scholar]
  33. Gobba N.A.E.K. Hussein Ali A. El Sharawy D.E. Hussein M.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders. Arch. Environ. Occup. Health 2018 73 3 189 202 10.1080/19338244.2017.1314930 28375782
    [Google Scholar]
  34. Borik R.M. Hussein M.A. Synthesis, molecular docking, biological potentials and structure-activity relationship of new quinazoline and quinazoline-4-one derivatives. Asian J. Chem. 2021 33 2 423 438 10.14233/ajchem.2021.23036
    [Google Scholar]
  35. Elharrif M.G. Abdel Maksoud H.A. Abdullah M.H. Abd Elmohsen A.S. Biochemical evaluation of possible protective effect of purslane extract in experimentally induced arthritis associated with obesity. Prostaglandins Other Lipid Mediat. 2024 172 106823 10.1016/j.prostaglandins.2024.106823 38408536
    [Google Scholar]
  36. Elmoghazy H.M. Hussein M.A. Abdel-Aziz A. Elmasry S.A. Metwal A.M. CAPE improves vanin-1/akt/mirna-203 signaling pathways in dss-induced ulcerative colitis. Biomed. Res. Ther. 2022 9 9 5313 5325 10.15419/bmrat.v9i9.769
    [Google Scholar]
  37. M Fayed A A Abdalla E, Hassan SA, A Hussein M, M Roshdy T. Downregulation of TLR4-NF-?B-P38 mapk signalling in cholestatic rats treated with cranberry extract. Pak. J. Biol. Sci. 2022 25 2 112 122 10.3923/pjbs.2022.112.122 35233999
    [Google Scholar]
  38. Hussein M.A. Prophylactic effect of resveratrol against ethinylestradiol-induced liver cholestasis. J. Med. Food 2013 16 3 246 254 10.1089/jmf.2012.0183 23305807
    [Google Scholar]
  39. Elneklawi M.S. Mohamed Z.N. Hussein M.A. Mohamad E.A. STEN ameliorates VEGF gene expression by improving XBP1/mRNA-21/mRNA-330 signalling pathways in cisplatin-induced uterus injury in rats. J. Drug Deliv. Sci. Technol. 2023 87 104760 10.1016/j.jddst.2023.104760
    [Google Scholar]
  40. Abd-Elghany A.A. Mohamad E.A. Alqarni A. Hussein M.A. Mansour M.S. Chemosensitization and molecular docking assessment of dio-nps on resistant breast cancer cells to tamoxifen. Pharmaceuticals 2025 18 4 452 10.3390/ph18040452 40283888
    [Google Scholar]
  41. Abal P. Louzao M. Antelo A. Acute oral toxicity of tetrodotoxin in mice: determination of lethal dose 50 (LD50) and no observed adverse effect level (NOAEL). Toxins (Basel) 2017 9 3 75 10.3390/toxins9030075 28245573
    [Google Scholar]
  42. Mansour M.S. Mahmoud A.A. Sayah M.A. Mohamed Z.N. Hussein M.A. ALsherif DA. RES-CMCNPs Enhance Antioxidant, Proinflammatory, and Sensitivity of Tumor Solids to γ-irradiation in EAC-Bearing Mice. Pharm. Nanotechnol. 2025 13 1 254 269 10.2174/0122117385290497240324190453 38676484
    [Google Scholar]
  43. Grindem C.B. Schalm’s Veterinary Hematology. Canada 2011 270
    [Google Scholar]
  44. Reitman S. Frankel S. A colorimetric method for the determination of plasma oxaloacetic acid and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957 28 56 63 10.1093/ajcp/28.1.56 13458125
    [Google Scholar]
  45. Kind P.R.N. King E.J. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J. Clin. Pathol. 1954 7 4 322 326 10.1136/jcp.7.4.322 13286357
    [Google Scholar]
  46. Buhl S.N. Jackson K.Y. Optimal conditions and comparison of lactate dehydrogenase catalysis of the lactate to pyruvate to lactate reactions in human plasma at 25, 30 and 37 0C. Clin. Chem. 1978 2415 828 10.1093/clinchem/24.5.828 25724
    [Google Scholar]
  47. Akerboom T.P.M. Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 1981 77 373 82 10.1016/S0076‑6879(81)77050‑2] 7329314
    [Google Scholar]
  48. Uchiyama M. Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978 86 1 271 278 10.1016/0003‑2697(78)90342‑1 655387
    [Google Scholar]
  49. Marklund S. Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 1974 47 3 469 474 10.1111/j.1432‑1033.1974.tb03714.x 4215654
    [Google Scholar]
  50. Aebi H. Catalase in vitro. Methods Enzymol 1984 105 121 6 10.1016/S0076‑6879(84)05016‑3] 6727660
    [Google Scholar]
  51. Alturkistani H.A. Tashkandi F.M. Mohammedsaleh Z.M. Histological stains: A literature review and case study. Glob. J. Health Sci. 2015 8 3 72 79 10.5539/gjhs.v8n3p72 26493433
    [Google Scholar]
  52. Krivák R. Hoksza D. P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. J. Cheminform. 2018 10 1 39 10.1186/s13321‑018‑0285‑8 30109435
    [Google Scholar]
  53. Morris G.M. Huey R. Lindstrom W. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  54. Fährrolfes R. Bietz S. Flachsenberg F. ProteinsPlus: A web portal for structure analysis of macromolecules. Nucleic Acids Res. 2017 45 W1 W337-43 10.1093/nar/gkx333 28472372
    [Google Scholar]
  55. Schöning-Stierand K. Diedrich K. Ehrt C. Proteins plus: A comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022 50 W1 W611-5 10.1093/nar/gkac305 35489057
    [Google Scholar]
  56. Mohamad E.A. Mohamed Z.N. Hussein M.A. Elneklawi M.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation. ACS Omega 2022 7 3 3109 3120 10.1021/acsomega.1c06591 35097306
    [Google Scholar]
  57. Hussein M.A. Boshra S. Antitumor and structure antioxidant activity relationship of colchicine on ehrlich ascites carcinoma (EAC) in female mice. Int. J. Drug Deliv. 2013 5 4 430 437
    [Google Scholar]
  58. Al-nami S.Y. Alorabi A.Q. Al-Ahmed Z.A. Superficial and inkjet scalable printed sensors integrated with iron oxide and reduced graphene oxide for sensitive voltammetric determination of lurasidone. ACS Omega 2023 8 11 10449 10458 10.1021/acsomega.3c00040 36969426
    [Google Scholar]
  59. Mosaad Y. Gobba N. Hussein M. Astaxanthin; A promising protector against gentamicin-induced nephrotoxicity in rats. Curr. Pharm. Biotechnol. 2016 17 13 1189 1197 10.2174/1389201017666160922110740 27658618
    [Google Scholar]
  60. Abdel-Gawad S.M. Ghorab M.M. El-Sharief A.M.S. El-Telbany F.A. Abdel-Alla M. Design, synthesis, and antimicrobial activity of some new pyrazolo[3,4‐ d]pyrimidines. Heteroatom Chem. 2003 14 6 530 534 10.1002/hc.10187
    [Google Scholar]
  61. Smith J. Lee A. Kumar R. Applications of UV Vis spectroscopy in nanoparticle based drug delivery systems. J. Nanomed. Nanotechnol. 2024 15 2 112 125 10.1016/j.jnanomed.2024.02.005
    [Google Scholar]
  62. Johnson M. Patel S. Huang T. Encapsulation efficiency and its impact on therapeutic outcomes in nanoparticle drug delivery. Drug Deliv. Transl. Res. 2025 15 1 7 25 10.1007/s13346‑024‑01579‑w
    [Google Scholar]
  63. Leng J. Li X. Tian H. Neuroprotective effect of diosgenin in a mouse model of diabetic peripheral neuropathy involves the Nrf2/HO-1 pathway. BMC Complement. Med. Ther. 2020 20 1 126 10.1186/s12906‑020‑02930‑7 32336289
    [Google Scholar]
  64. Singh G.K. Yadav V. Singh P. Bhowmik K.T. Radiation-induced malignancies making radiotherapy a “two-edged sword”: A review of literature. World J. Oncol. 2017 8 1 1 6 10.14740/wjon996w 28983377
    [Google Scholar]
  65. Shehata M.R. Mohamed M.M.A. Shoukry M.M. Hussein M.A. Hussein F.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine. J. Coord. Chem. 2015 68 6 1101 1114 10.1080/00958972.2015.1007962
    [Google Scholar]
  66. M Soliman S Mosallam S, Mamdouh MA, Hussein MA, M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv. 2022 29 1 427 439 10.1080/10717544.2022.2032875 35098843
    [Google Scholar]
  67. Gurunathan S. Qasim M. Park C. Yoo H. Kim J.H. Hong K. Cytotoxic potential and molecular pathway analysis of silver nanoparticles in human colon cancer cells HCT116. Int. J. Mol. Sci. 2018 19 8 2269 10.3390/ijms19082269 30072642
    [Google Scholar]
  68. Bawazeer S. Green synthesis of silver nanoparticles from Euphorbia milii plant extract for enhanced antibacterial and enzyme inhibition effects. Int. J. Health Sci. 2024 18 2 25 32 38455597
    [Google Scholar]
  69. Safaei F. Farimaneh J. Rajabi Mohammad Abad A. The effect of silver nanoparticles on learning and memory in rodents: “a systematic review”. J. Occup. Med. Toxicol. 2023 18 1 15 10.1186/s12995‑023‑00381‑7 37525184
    [Google Scholar]
  70. Vinhas R. Mendes R. Fernandes A.R. Baptista P.V. Nanoparticles—Emerging Potential for Managing Leukemia and Lymphoma. Front. Bioeng. Biotechnol. 2017 5 79 10.3389/fbioe.2017.00079 29326927
    [Google Scholar]
  71. Elfaky M.A. Sirwi A. Ismail S.H. Awad H.H. Gad S.S. Hepatoprotective effect of silver nanoparticles at two different particle sizes: Comparative study with and without silymarin. Curr. Issues Mol. Biol. 2022 44 7 2923 2938 10.3390/cimb44070202 35877426
    [Google Scholar]
  72. Lomelí-Rosales D.A. Zamudio-Ojeda A. Reyes-Maldonado O.K. Green synthesis of gold and silver nanoparticles using leaf extract of capsicum chinense plant. Molecules 2022 27 5 1692 10.3390/molecules27051692 35268794
    [Google Scholar]
  73. Lima M.S.R. de Lima V.C.O. Piuvezam G. de Azevedo K.P.M. Maciel B.L.L. Morais A.H.A. Mechanisms of action of anti-inflammatory proteins and peptides with anti-TNF-alpha activity and their effects on the intestinal barrier: A systematic review. PLoS One 2022 17 8 e0270749 10.1371/journal.pone.0270749 35939430
    [Google Scholar]
  74. Chen W. Li Z. Yu N. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells. J. Nanobiotechnology 2023 21 1 355 10.1186/s12951‑023‑02129‑1 37775799
    [Google Scholar]
  75. Hussein M.A. Sallam A.S. Mohamed S.A. Cucurbitacin E glucoside as an apoptosis inducer in melanoma cancer cells by modulating AMPK/PGK1/PKM2 pathway. Anticancer. Agents Med. Chem. 2025 25 13 885 898 10.2174/0118715206345600241216053948 39757677
    [Google Scholar]
  76. Mohamed M.M. Hussein M.A. Elashmony S.M. Saifeldeen E.R. Roshdy T. Metwaly A.M. Optimization of hesperidin nanoparticles as a promising CYP2E1 and CYP3A11 regulator in paracetamol-intoxicated mice. Curr. Pharm. Biotechnol. 2025 10.2174/0113892010336010250212060619 40370238
    [Google Scholar]
  77. Hussein M.A. Farouk G.A. Abdelkader H.K. Vitexin’s role in colon cancer apoptosis: AMPK/mTOR pathway modulation explored through experimental and computational approaches. Recent Pat Anticancer Drug Discov 2025 10.2174/0115748928361989250226083146
    [Google Scholar]
  78. Abdel-Alim R. Abbas N. Hussein M. Abdel-Aziz A. Ibrahim G. Microbial production of dihydroprotopanaxatriol from ginsenoside Rg1 by C. lunata NRRL 2178 as a promising anti-cancer drug for targeting lung cancer. Curr. Cancer Ther. Rev. 2025 21 10.2174/0115733947349899250220090656
    [Google Scholar]
  79. Salah A. Edward M.M. Hussein M.A. Roshdy T. Basiouny M.S. Diosgenin-loaded silver nanoparticles mitigate B[a]P-induced lung fibrosis through modulation of oxidative stress and inflammatory pathways. Pharm. Nanotechnol. 2025 10.2174/0122117385337401250116040312 39901680
    [Google Scholar]
  80. Eltawila M.M. Hamdy R.A. Hussein M.A. Aborhyem S.M. Nutritional evaluation and free radical scavenging activity of nano-formulated selenium-moringa peregrina seed extract as a promising suppressor of tgf-β1/p38/nf-κb signaling pathway in hgcl2 intoxicated-mice. Curr. Pharm. Biotechnol. 2025 10.2174/0113892010352642241221152820 39838660
    [Google Scholar]
  81. El-Gizawy H.A. Abo-Salem H.M. Ali A.A. Hussein M.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABAA α5, GSK-3β, and p38α MAP-kinase genes. ACS Omega 2021 6 31 20492 20511 10.1021/acsomega.1c02340 34395996
    [Google Scholar]
/content/journals/pra/10.2174/0115748928394316250831082610
Loading
/content/journals/pra/10.2174/0115748928394316250831082610
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ABCC1 ; Nrf2 ; Diosgenin nanoparticles ; leukemia ; ENU ; liver ; and NQO1 ; γ-irradiation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test