Skip to content
2000
image of Investigating the Therapeutic Potential and Molecular Mechanisms of Daphnetin: A Comprehensive Review

Abstract

Coumarins, a ubiquitous class of aromatic compounds present in a broad spectrum of organisms, including bacteria, fungi, and over 150 plant species, have been extensively studied over the years. Researchers have isolated and characterized more than 1,300 natural coumarins, many of which exhibit promising biomedical properties. Among these, daphnetin has emerged as a distinctive coumarin derivative that is characterized by its unique structural features to impart special physicochemical attributes. Daphnetin is renowned for its diverse range of biological activities, encompassing anticancer, anti-inflammatory, and antiallergic effects. These activities can be attributed to its ability to regulate specific molecular pathways within the body, making it a highly attractive compound for pharmacological research. Consequently, daphnetin has garnered considerable attention within the scientific community, specifically prompting an extensive investigation into its therapeutic potential across diverse clinical conditions. In this comprehensive review, we delved into the structure and sources of daphnetin, with a focus on its unique characteristics that underscore its potential as a therapeutic agent. We further explored the therapeutic potential of daphnetin, highlighting its multifaceted biological activities and the underlying molecular mechanisms. In addition, we scrutinized the potentially toxic effects of daphnetin in light of the current research status and prospects in this direction. By emphasizing the clinical significance of daphnetin, we aim to contribute to the ongoing endeavors toward the development of innovative and efficacious therapeutic strategies for an array of diseases.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928371118250327084127
2025-04-15
2025-09-28
Loading full text...

Full text loading...

References

  1. Zhu W. Han M. Bu Y. Li X. Yi S. Xu Y. Li J. Plant polyphenols regulating myoglobin oxidation and color stability in red meat and certain fish: A review. Crit. Rev. Food Sci. Nutr. 2024 64 8 2276 2288 10.1080/10408398.2022.2122922 36102134
    [Google Scholar]
  2. Ando T. Nagumo M. Ninomiya M. Tanaka K. Linhardt R.J. Koketsu M. Synthesis of coumarin derivatives and their cytoprotective effects on t -BHP-induced oxidative damage in HepG2 cells. Bioorg. Med. Chem. Lett. 2018 28 14 2422 2425 10.1016/j.bmcl.2018.06.018 29914769
    [Google Scholar]
  3. Yadav V. Thakur A. Bharti R. Verma M. Sharma R. Recent advancement in multicomponent synthesis of fused coumarin derivatives. Curr. Org. Synth. 2024 21 3 303 330 Epub ahead of print 10.2174/1570179420666230427110019 37102478
    [Google Scholar]
  4. Gong S.Q. Liu H. Wu J.L. Xu J.X. Effects of daphnetin on the mechanism of epithelial-mesenchymal transition induced by HMGB1 in human lung adenocarcinoma cells (A549 cell line). Biotechnol. Genet. Eng. Rev. 2024 40 3 1489 1510 10.1080/02648725.2023.2194092 36994673
    [Google Scholar]
  5. Guo Y. Zhang H. Lv Z. Du Y. Li D. Fang H. You J. Yu L. Li R. Up-regulated CD38 by daphnetin alleviates lipopolysaccharide-induced lung injury via inhibiting MAPK/NF-κB/NLRP3 pathway. Cell Commun. Signal. 2023 21 1 66 10.1186/s12964‑023‑01041‑3 36998049
    [Google Scholar]
  6. Yang T. Pan Q. Yue R. Liu G. Zhou Y. Daphnetin alleviates silica-induced pulmonary inflammation and fibrosis by regulating the PI3K/AKT1 signaling pathway in mice. Int. Immunopharmacol. 2024 133 112004 10.1016/j.intimp.2024.112004 38613881
    [Google Scholar]
  7. Liang F. Tian X. Ding L. Daphnetin modulates GLP-1R to alleviate cognitive dysfunction in diabetes: Implications for inflammation and oxidative stress. Front. Pharmacol. 2024 15 1438926 10.3389/fphar.2024.1438926 39257395
    [Google Scholar]
  8. Park J.Y. Lee J.W. Oh E.S. Song Y.N. Kang M.J. Ryu H.W. Kim D.Y. Oh S.R. Lee J. Choi J. Kim N. Kim M.O. Hong S.T. Lee S.U. Daphnetin alleviates allergic airway inflammation by inhibiting T-cell activation and subsequent JAK/STAT6 signaling. Eur. J. Pharmacol. 2024 979 176826 10.1016/j.ejphar.2024.176826 39033840
    [Google Scholar]
  9. Wang Y. Chen J. Chen J. Dong C. Yan X. Zhu Z. Lu P. Song Z. Liu H. Chen S. Daphnetin ameliorates glucocorticoid-induced osteoporosis via activation of Wnt/GSK-3β/β-catenin signaling. Toxicol. Appl. Pharmacol. 2020 409 115333 10.1016/j.taap.2020.115333 33171191
    [Google Scholar]
  10. Chaudhary P.K. Kim S. Kim S. Antiplatelet effect of daphnetin is regulated by cPLA2-mediated thromboxane A2 generation in mice. Int. J. Mol. Sci. 2023 24 6 5779 10.3390/ijms24065779 36982853
    [Google Scholar]
  11. Ahmed Borik R.M. El-Wahab A.H.F.A. Heteroaromatization of coumarin part I: Design, synthesis, reactions, antitumor activities of novel pyridine and naphthyridine derivatives. Curr. Org. Synth. 2024 21 4 571 581 10.2174/0115701794265924230920061222 38174438
    [Google Scholar]
  12. Banerjee B. Kaur G. Kaur N. p-Sulfonic acid calix[n]arene catalyzed synthesis of bioactive heterocycles: A review. Curr. Org. Chem. 2021 25 1 209 222 10.2174/1385272824999201019162655
    [Google Scholar]
  13. Wang W. Feng G. Li L. Li W. Liu W. Wu Z. Su H. Zhu G. Ren C. Song X. Zhang J. He Z. Pharmacokinetics and tissue distribution study of daphnoretin in ethanolextract from the roots of Wikstroemia indica in rats by a validatedUPLC-MS/MS method. Curr. Pharm. Anal. 2023 19 4 289 300 10.2174/1573412919666230223140457
    [Google Scholar]
  14. Dutt R. Garg V. Khatri N. Madan A.K. Phytochemicals in anticancer drug development. Anticancer. Agents Med. Chem. 2019 19 2 172 183 10.2174/1871520618666181106115802 30398123
    [Google Scholar]
  15. Wang W. Xu X. Yang M. Jiang M. Wang D. Tang C. Wei W. Chen J. Ginsenoside compound K reduces psoriasis-related inflammation by activation of the glucocorticoid receptor in keratinocytes. Curr. Mol. Pharmacol. 2024 17 e18761429254358 10.2174/0118761429254358231120135400 38389423
    [Google Scholar]
  16. Dhiman P. Malik N. Khatkar A. Kulharia M. Antioxidant, xanthine oxidase and monoamine oxidase inhibitory potential of coumarins: A review. Curr. Org. Chem. 2017 21 4 294 304 10.2174/1385272820666161021103547
    [Google Scholar]
  17. Delogu G.L. Matos M.J. Coumarins as promising scaffold for the treatment of age-related diseases - an overview of the last five years. Curr. Top. Med. Chem. 2018 17 29 3173 3189 10.2174/1568026618666171215094029 29243580
    [Google Scholar]
  18. Maria J.M. Saleta V.R. Andre F. Eugenio U. Lourdes S. Fernanda B. Heterocyclic antioxidants in nature: Coumarins. Curr. Org. Chem. 2017 21 4 311 324 10.2174/1385272820666161017170652
    [Google Scholar]
  19. Wei Z. Wei N. Su L. Gao S. The molecular effects underlying the pharmacological activities of daphnetin. Front. Pharmacol. 2024 15 1407010 10.3389/fphar.2024.1407010 39011506
    [Google Scholar]
  20. Hang S. Wu W. Wang Y. Sheng R. Fang Y. Guo R. Daphnetin, a coumarin in genus stellera chamaejasme linn: Chemistry, bioactivity and therapeutic potential. Chem. Biodivers. 2022 19 9 e202200261 10.1002/cbdv.202200261 35880614
    [Google Scholar]
  21. Liu C. Pan J. Liu H. Lin R. Chen Y. Zhang C. Daphnetin inhibits the survival of hepatocellular carcinoma cells through regulating Wnt/β‐catenin signaling pathway. Drug Dev. Res. 2022 83 4 952 960 10.1002/ddr.21920 35132666
    [Google Scholar]
  22. Jun Z. Application of daphnetin and composition containing daphnetin in preparation of medicine for treating diabetic complications. Patent C.N. 117243947, 2023
  23. Xuefu Y. Genzhu W. Congran L. Applications of daphnetin in inhibition of Helicobacter pylori. Patent C.N. 108379258, 2020
  24. Yongkui W. Jian C. Chen S. Chao D. Zhongpei Z. Application of daphnetin in preparation of medicine for treating glucocorticoid induced osteoporosis. Patent C.N. 111658638, 2020
  25. Fei W. Guolin Z. Sheng L. Anti-tumor combination drug. Patent C.N. 109453164, 2018
  26. Pinto D.C.G.A. Silva A.M.S. Anticancer natural coumarins as lead compounds for the discovery of new drugs. Curr. Top. Med. Chem. 2018 17 29 3190 3198 10.2174/1568026618666171215095750 29243581
    [Google Scholar]
  27. Gagliotti Vigil de Mello S.V. Frode T.S. In vitro and in vivo experimental model-based approaches for investigating anti-inflammatory properties of coumarins. Curr. Med. Chem. 2018 25 12 1446 1476 10.2174/0929867324666170502122740 28464781
    [Google Scholar]
  28. Pereira T.M. Franco D.P. Vitorio F. Kummerle A.E. Coumarin compounds in medicinal chemistry: Some important examples from the last years. Curr. Top. Med. Chem. 2018 18 2 124 148 10.2174/1568026618666180329115523 29595110
    [Google Scholar]
  29. Deng H. Zheng M. Hu Z. Zeng X. Kuang N. Fu Y. Effects of daphnetin on the autophagy signaling pathway of fibroblast-like synoviocytes in rats with collagen-induced arthritis (CIA) induced by TNF-α. Cytokine 2020 127 154952 10.1016/j.cyto.2019.154952 31865066
    [Google Scholar]
  30. Jun Z. Application of daphnetin-containing composition in preparation of medicines for treating rheumatic arthritis. Patent C.N. 117243948, 2023
  31. Dushianthan A. Bracegirdle L. Cusack R. Cumpstey A.F. Postle A.D. Grocott M.P.W. Alveolar hyperoxia and exacerbation of lung injury in critically Ill SARS-CoV-2 pneumonia. Med. Sci. (Basel) 2023 11 4 70 10.3390/medsci11040070 37987325
    [Google Scholar]
  32. Zhang W. Zhuo S. He L. Cheng C. Zhu B. Lu Y. Wu Q. Shang W. Ge W. Shi L. Daphnetin prevents methicillin-resistant Staphylococcus aureus infection by inducing autophagic response. Int. Immunopharmacol. 2019 72 195 203 10.1016/j.intimp.2019.04.007 30991161
    [Google Scholar]
  33. Liyun S. Wei Z. Shiqin Z. Application of daphnetin in preparing relative preparations for treating lung diseases caused by methicillin-resistant staphylococcus aureus infection. Patent C.N. 109568310, 2019
  34. Salami O.M. Habimana O. Peng J. Yi G.H. Therapeutic strategies targeting mitochondrial dysfunction in sepsis-induced cardiomyopathy. Cardiovasc. Drugs Ther. 2024 38 1 163 180 10.1007/s10557‑022‑07354‑8 35704247
    [Google Scholar]
  35. Hao Y. Li J. Dan L. Wu X. Xiao X. Yang H. Chinese medicine as a therapeutic option for pulmonary fibrosis: Clinical efficacies and underlying mechanisms. J. Ethnopharmacol. 2024 318 Pt A 116836 10.1016/j.jep.2023.116836
    [Google Scholar]
  36. Park S.J. Ryu H.W. Kim J.H. Hahn H.J. Jang H.J. Ko S.K. Oh S.R. Lee H.J. Daphnetin alleviates bleomycin-induced pulmonary fibrosis through inhibition of epithelial-to-mesenchymal transition and IL-17A. Cells 2023 12 24 2795 10.3390/cells12242795 38132116
    [Google Scholar]
  37. Wang Q. Liu S. The effects and pathogenesis of PM2.5 and tts components on chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2023 18 493 506 10.2147/COPD.S402122 37056681
    [Google Scholar]
  38. Zeng X. Liu D. Wu W. Huo X. PM2.5 exposure inducing ATP alteration links with NLRP3 inflammasome activation. Environ. Sci. Pollut. Res. Int. 2022 29 17 24445 24456 10.1007/s11356‑021‑16405‑w 35064883
    [Google Scholar]
  39. Fan X. Gao Y. Hua C. Peng L. Ci X. Daphnetin ameliorates PM2.5-induced airway inflammation by inhibiting NLRP3 inflammasome-mediated pyroptosis in CS-exposed mice. Biomed. Pharmacother. 2023 165 115047 10.1016/j.biopha.2023.115047 37390709
    [Google Scholar]
  40. Islam R. Choudhary H. Rajan R. Vrionis F. Hanafy K.A. An overview on microglial origin, distribution, and phenotype in Alzheimer’s disease. J. Cell. Physiol. 2024 239 6 e30829 10.1002/jcp.30829 35822939
    [Google Scholar]
  41. Kou X. Shi X. Pang Z. Yang A. Shen R. Zhao L. A review on the natural components applied as lead compounds for potential multi-target anti-AD theranostic agents. Curr. Med. Chem. 2023 30 40 4586 4604 10.2174/0929867330666230125153027 36698238
    [Google Scholar]
  42. Ye Y. Gao M. Shi W. Gao Y. Li Y. Yang W. Zheng X. Lu X. The immunomodulatory effects of mesenchymal stem cell-derived extracellular vesicles in Alzheimer’s disease. Front. Immunol. 2024 14 1325530 10.3389/fimmu.2023.1325530 38259476
    [Google Scholar]
  43. Fan J. Wei X. Dong H. Zhang Y. Zhou Y. Xu M. Xiao G. Advancement in analytical techniques for determining the activity of β-site amyloid precursor protein cleaving enzyme 1. Crit. Rev. Anal. Chem. 2024 54 6 1797 1809 10.1080/10408347.2022.2132812 36227582
    [Google Scholar]
  44. Javed M. Saleem A. Xaveria A. Akhtar M.F. Daphnetin: A bioactive natural coumarin with diverse therapeutic potentials. Front. Pharmacol. 2022 13 993562 10.3389/fphar.2022.993562 36249766
    [Google Scholar]
  45. Jun Z. Jiping W. Yonghong M. Application of daphnetin in preparation of medicine for preventing and treating neurodegenerative diseases. Patent C.N. 118161485, 2024
  46. Gao P. Wang Z. Lei M. Che J. Zhang S. Zhang T. Hu Y. Shi L. Cui L. Liu J. Noda M. Peng Y. Long J. Daphnetin ameliorates Aβ pathogenesis via STAT3/GFAP signaling in an APP/PS1 double-transgenic mouse model of Alzheimer’s disease. Pharmacol. Res. 2022 180 106227 10.1016/j.phrs.2022.106227 35452800
    [Google Scholar]
  47. Yan L. Weiwei S. Huanmin L. Yufan J. New application of daphnetin in preparation of drugs for preventing and treating neurodegenerative diseases. Patent C.N. 109939107, 2019
  48. Yan L. Jin Y. Pan J. He X. Zhong S. Zhang R. Choi L. Su W. Chen J. 7,8-Dihydroxycoumarin alleviates synaptic loss by activated PI3K-Akt-CREB-BDNF signaling in Alzheimer’s disease model mice. J. Agric. Food Chem. 2022 70 23 7130 7138 10.1021/acs.jafc.2c02140 35657168
    [Google Scholar]
  49. Zhang X. Ma W. Liu H. Liu Y. Zhang Y. He S. Ding X. Li B. Yan Y. Daphnetin protects neurons in an Alzheimer disease mouse model and normal rat neurons by inhibiting BACE1 activity and activating the Nrf2/HO-1 pathway. J. Neuropathol. Exp. Neurol. 2024 83 8 670 683 10.1093/jnen/nlae043 38819094
    [Google Scholar]
  50. Lewis M. Baroutian S. Hanning S.M. Phytocannabinoids for the treatment of neuropathic pain: A scoping review of randomised controlled trials published between 2012 and 2023. Curr. Pain Headache Rep. 2024 28 3 109 118 10.1007/s11916‑023‑01196‑1 38095748
    [Google Scholar]
  51. Inoue K. Tsuda M. Koizumi S. ATP- and adenosine-mediated signaling in the central nervous system: Chronic pain and microglia: Involvement of the ATP receptor P2X4. J. Pharmacol. Sci. 2004 94 2 112 114 10.1254/jphs.94.112 14978347
    [Google Scholar]
  52. Liang W. Zhang T. Zhang M. Gao J. Huang R. Huang X. Chen J. Cheng L. Zhang L. Huang Z. Tan Q. Jia Z. Zhang S. Daphnetin ameliorates neuropathic pain via regulation of microglial responses and glycerophospholipid metabolism in the spinal cord. Pharmaceuticals (Basel) 2024 17 6 789 10.3390/ph17060789 38931456
    [Google Scholar]
  53. Ruihua G. Yinan W. Wenhui W. Zhe F. Agonist daphnetin derivative, pharmaceutical composition and application thereof. Patent C.N. 111892568, 2020
  54. Zhang T. Liang W. Zhang M. Cui S. Huang X. Ou W. Huang R. Gao J. Jia Z. Zhang S. Daphnetin improves neuropathic pain by inhibiting the expression of chemokines and inflammatory factors in the spinal cord and interfering with glial cell polarization. Pharmaceuticals (Basel) 2023 16 2 243 10.3390/ph16020243 37259390
    [Google Scholar]
  55. Zhang M. Liu Q. Meng H. Duan H. Liu X. Wu J. Gao F. Wang S. Tan R. Yuan J. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024 9 1 12 10.1038/s41392‑023‑01688‑x 38185705
    [Google Scholar]
  56. Liu J. Chen Q. Jian Z. Xiong X. Shao L. Jin T. Zhu X. Wang L. Daphnetin protects against cerebral ischemia/reperfusion injury in mice via inhibition of TLR4/NF-κB signaling pathway. BioMed Res. Int. 2016 2016 1 6 10.1155/2016/2816056 28119924
    [Google Scholar]
  57. Goh L.Y. Limbachia K. Moonim M. Morley A.M.S. Primary lacrimal sac melanoma: A case report describing the novel use of fine needle aspiration cytology (FNAC) for diagnosis, together with literature review and immunotherapy treatment update. Orbit 2024 43 2 270 279 10.1080/01676830.2022.2119264 36069101
    [Google Scholar]
  58. Zeiger J.S. Lally S.E. Dalvin L.A. Shields C.L. Advances in conjunctival melanoma: Clinical features, diagnostic modalities, staging, genetic markers, and management. Can. J. Ophthalmol. 2024 59 4 209 217 10.1016/j.jcjo.2023.02.003 36921624
    [Google Scholar]
  59. Wróblewska-Łuczka P. Góralczyk A. Łuszczki J.J. Daphnetin, a coumarin with anticancer potential against human melanoma: in vitro study of its effective combination with selected cytostatic drugs. Cells 2023 12 12 1593 10.3390/cells12121593 37371063
    [Google Scholar]
  60. Saman S. Srivastava N. Yasir M. Chauhan I. A comprehensive review on current treatments and challenges involved in the treatment of ovarian cancer. Curr. Cancer Drug Targets 2024 24 2 142 166 10.2174/1568009623666230811093139 37642226
    [Google Scholar]
  61. Zhou X. Yu Y. Xie B. Chen T. Cai L. Naringin regulates the growth and apoptosis of ovarian cancer cells via the TGF-β signaling pathway: A prospective laboratory based study. Clin. Exp. Obstet. Gynecol. 2024 51 5 111 10.31083/j.ceog5105111
    [Google Scholar]
  62. Zhou X. Hu G. Luo Z. Luo C. Wei J. Wang X. Shen Z. Yu Y. Chen T. Cai L. Probiotics alleviate paraneoplastic thrombocythemia of ovarian cancer: A randomized placebo-controlled trial. J. Funct. Foods 2024 119 106316 10.1016/j.jff.2024.106316
    [Google Scholar]
  63. Xie B. Zhou X. Luo C. Fang Y. Wang Y. Wei J. Cai L. Chen T. Reversal of platinum-based chemotherapy resistance in ovarian cancer by naringin through modulation of the gut microbiota in a humanized nude mouse model. J. Cancer 2024 15 13 4430 4447 10.7150/jca.96448 38947385
    [Google Scholar]
  64. Ye C. Hu G. Zhou X. Deng W. Hu K. Fu M. Comparative analysis of gene expression profiles in ovarian clear cell carcinoma and high-grade serous ovarian cancer. J. Coll. Physicians Surg. Pak. 2024 34 9 1066 1072 10.29271/jcpsp.2024.09.1066 39262007
    [Google Scholar]
  65. Liu M. Wu K. Wu Y. The emerging role of ferroptosis in female reproductive disorders. Biomed. Pharmacother. 2023 166 115415 10.1016/j.biopha.2023.115415 37660655
    [Google Scholar]
  66. Fan X. Xie M. Zhao F. Li J. Fan C. Zheng H. Wei Z. Ci X. Zhang S. Daphnetin triggers ROS-induced cell death and induces cytoprotective autophagy by modulating the AMPK/Akt/mTOR pathway in ovarian cancer. Phytomedicine 2021 82 153465 10.1016/j.phymed.2021.153465 33486268
    [Google Scholar]
  67. Ma N. Zhang M. Hu J. Wei Z. Zhang S. Daphnetin induces ferroptosis in ovarian cancer by inhibiting NAD(P)H:Quinone oxidoreductase 1 (NQO1). Phytomedicine 2024 132 155876 10.1016/j.phymed.2024.155876 39032284
    [Google Scholar]
  68. Batheja S. Sahoo R.K. Tarannum S. Vaiphei K.K. Jha S. Alexander A. Goyal A.K. Gupta U. Hepatocellular carcinoma: Preclinical and clinical applications of nanotechnology with the potential role of carbohydrate receptors. Biochim. Biophys. Acta, Gen. Subj. 2023 1867 10 130443 10.1016/j.bbagen.2023.130443 37573973
    [Google Scholar]
  69. Shree Harini K. Ezhilarasan D. Mani U. Molecular insights on intracellular Wnt/β‐catenin signaling in alcoholic liver disease. Cell Biochem. Funct. 2024 42 1 e3916 10.1002/cbf.3916 38269515
    [Google Scholar]
  70. Yao B. Yang Q. Yang Y. Li Y. Peng H. Wu S. Wang L. Zhang S. Huang M. Wang E. Xiong P. Luo T. Li L. Jia S. Deng Y. Deng Y. Screening for active compounds targeting human natural killer cell activation identifying daphnetin as an enhancer for IFN-γ production and direct cytotoxicity. Front. Immunol. 2021 12 680611 10.3389/fimmu.2021.680611 34956168
    [Google Scholar]
  71. Li S. Liu G. Hu S. Osteoporosis: Interferon-gamma-mediated bone remodeling in osteoimmunology. Front. Immunol. 2024 15 1396122 10.3389/fimmu.2024.1396122 38817601
    [Google Scholar]
  72. Liu X. Gao X. Liu Y. Liang D. Fu T. Song Y. Zhao C. Dong B. Han W. Daphnetin inhibits RANKL‐induced osteoclastogenesis in vitro. J. Cell. Biochem. 2019 120 2 2304 2312 10.1002/jcb.27555 30206967
    [Google Scholar]
  73. Hu X. Wang Z. Wang W. Cui P. Kong C. Chen X. Lu S. Irisin as an agent for protecting against osteoporosis: A review of the current mechanisms and pathways. J. Adv. Res. 2024 62 175 186 10.1016/j.jare.2023.09.001 37669714
    [Google Scholar]
  74. Gao J. Wang Z. Gao P. Fan Q. Zhang T. Cui L. Shi L. Liu Z. Yang Z. He L. Wang C. Li Y. Qu L. Liu J. Long J. Daphnetin alleviates senile and disuse osteoporosis by distinct modulations of bone formation and resorption. Antioxidants 2022 11 12 2365 10.3390/antiox11122365 36552574
    [Google Scholar]
  75. Singh L. Singh A.P. Bhatti R. Mechanistic interplay of various mediators involved in mediating the neuroprotective effect of daphnetin. Pharmacol. Rep. 2021 73 5 1220 1229 10.1007/s43440‑021‑00261‑z 33860917
    [Google Scholar]
  76. Pandey S.P. Bhaskar R. Han S.S. Narayanan K.B. Autoimmune responses and therapeutic interventions for systemic lupus erythematosus: A comprehensive review. Endocr. Metab. Immune Disord. Drug Targets 2024 24 5 499 518 10.2174/1871530323666230915112642 37718519
    [Google Scholar]
  77. Li M. Shi X. Chen F. Hao F. Daphnetin inhibits inflammation in the NZB/W F1 systemic lupus erythematosus murine model via inhibition of NF-κB activity. Exp. Ther. Med. 2017 13 2 455 460 10.3892/etm.2016.3971 28352315
    [Google Scholar]
  78. Peng Y. Zhang M. Hu J. Non-coding RNAs involved in fibroblast-like synoviocyte functioning in arthritis rheumatoid: From pathogenesis to therapy. Cytokine 2024 173 156418 10.1016/j.cyto.2023.156418 37952312
    [Google Scholar]
  79. Qin Q. Hu G. Zhou X. Zhu R. Chen J. Zeng K. Wu J. Wei J. Chen T. Guo X. Therapeutic potential of the probiotic Lactiplantibacillus plantarum BX 62 and its postbiotics in alleviating rheumatoid arthritis in mice. Curr. Res. Food Sci. 2024 9 100915 10.1016/j.crfs.2024.100915 39582573
    [Google Scholar]
  80. Promila L. Joshi A. Khan S. Aggarwal A. Lahiri A. Role of mitochondrial dysfunction in the pathogenesis of rheumatoid arthritis: Looking closely at fibroblast- like synoviocytes. Mitochondrion 2023 73 62 71 10.1016/j.mito.2023.10.004 38506094
    [Google Scholar]
  81. Caramés B. Hasegawa A. Taniguchi N. Miyaki S. Blanco F.J. Lotz M. Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann. Rheum. Dis. 2012 71 4 575 581 10.1136/annrheumdis‑2011‑200557 22084394
    [Google Scholar]
  82. Zheng M. Kuang N. Zeng X. Wang J. Zou Y. Fu Y. Daphnetin induces apoptosis in fibroblast-like synoviocytes from collagen-induced arthritic rats mainly via the mitochondrial pathway. Cytokine 2020 133 155146 10.1016/j.cyto.2020.155146 32505094
    [Google Scholar]
  83. Zhao B. Zheng H. Yang T. Zheng R. Eosinophilic granulomatosis with polyangiitis in allergic asthma: Efforts to make early diagnosis possible. Allergy Asthma Proc. 2023 44 1 59 63 10.2500/aap.2023.44.220072 36719697
    [Google Scholar]
  84. Niimi A. Fukunaga K. Taniguchi M. Nakamura Y. Tagaya E. Horiguchi T. Yokoyama A. Yamaguchi M. Nagata M. Executive summary: Japanese guidelines for adult asthma (JGL) 2021. Allergol. Int. 2023 72 2 207 226 10.1016/j.alit.2023.02.006 36959028
    [Google Scholar]
  85. Liskiewicz A. Khalil A. Liskiewicz D. Novikoff A. Grandl G. Maity-Kumar G. Gutgesell R.M. Bakhti M. Bastidas-Ponce A. Czarnecki O. Makris K. Lickert H. Feuchtinger A. Tost M. Coupland C. Ständer L. Akindehin S. Prakash S. Abrar F. Castelino R.L. He Y. Knerr P.J. Yang B. Hogendorf W.F.J. Zhang S. Hofmann S.M. Finan B. DiMarchi R.D. Tschöp M.H. Douros J.D. Müller T.D. Glucose-dependent insulinotropic polypeptide regulates body weight and food intake via GABAergic neurons in mice. Nat. Metab. 2023 5 12 2075 2085 10.1038/s42255‑023‑00931‑7 37946085
    [Google Scholar]
  86. Zhou D. Li S. Hu G. Wang Y. Qi Z. Xu X. Wei J. Liu Q. Chen T. Hypoglycemic effect of C. butyricum -pMTL007-GLP-1 engineered probiotics on type 2 diabetes mellitus. Gut Microbes 2025 17 1 2447814 10.1080/19490976.2024.2447814 39745177
    [Google Scholar]
  87. Tasian G.E. Dickinson K. Park G. Marchesani N. Mittal A. Cheng N. Ching C.B. Chu D.I. Walton R. Yonekawa K. Gluck C. Muneeruddin S. Kan K.M. DeFoor W. Rove K. Forrest C.B. Distinguishing characteristics of pediatric patients with primary hyperoxaluria type 1 in PEDSnet. J. Pediatr. Urol. 2024 20 1 88.e1 88.e9 10.1016/j.jpurol.2023.10.001 37848358
    [Google Scholar]
  88. Zhou R. Wen W. Gong X. Zhao Y. Zhang W. Nephro‐protective effect of Daphnetin in hyperoxaluria‐induced rat renal injury via alterations of the gut microbiota. J. Food Biochem. 2022 46 12 e14377 10.1111/jfbc.14377 35994414
    [Google Scholar]
  89. Fan X. Gu W. Gao Y. Ma N. Fan C. Ci X. Daphnetin ameliorated GM-induced renal injury through the suppression of oxidative stress and apoptosis in mice. Int. Immunopharmacol. 2021 96 107601 10.1016/j.intimp.2021.107601 33812255
    [Google Scholar]
  90. Wang G. Pang J. Hu X. Nie T. Lu X. Li X. Wang X. Lu Y. Yang X. Jiang J. Li C. Xiong Y.Q. You X. Daphnetin: A novel anti-helicobacter pylori agent. Int. J. Mol. Sci. 2019 20 4 850 10.3390/ijms20040850 30781382
    [Google Scholar]
  91. Du G. Tu H. Li X. Pei A. Chen J. Miao Z. Li J. Wang C. Xie H. Xu X. Zhao H. Daphnetin, a natural coumarin derivative, provides the neuroprotection against glutamate-induced toxicity in HT22 cells and ischemic brain injury. Neurochem. Res. 2014 39 2 269 275 10.1007/s11064‑013‑1218‑6 24343531
    [Google Scholar]
  92. Yang F. Jiang X. Cao H. Shuai W. Zhang L. Wang G. Quan D. Jiang X. Daphnetin preconditioning decreases cardiac injury and susceptibility to ventricular arrhythmia following ischaemia-reperfusion through the TLR4/MyD88/NF-κB signalling pathway. Pharmacology 2021 106 7-8 369 383 10.1159/000513631 33902056
    [Google Scholar]
  93. Han S. Li L. Song S. Daphne giraldii Nitsche (Thymelaeaceae): Phytochemistry, pharmacology and medicinal uses. Phytochemistry 2020 171 112231 10.1016/j.phytochem.2019.112231 31901473
    [Google Scholar]
  94. Jung W.K. Park S.B. Yu H.Y. Kim Y.H. Kim J. Effect of esculetin on tert-butyl hydroperoxide-induced oxidative injury in retinal pigment epithelial cells in vitro. Molecules 2022 27 24 8970 10.3390/molecules27248970 36558102
    [Google Scholar]
  95. Rajan L. Moliterno D.J. New anticoagulants in ischemic heart disease. Curr. Cardiol. Rep. 2012 14 4 450 456 10.1007/s11886‑012‑0270‑1 22528556
    [Google Scholar]
  96. Licciardello M.P. Ringler A. Markt P. Klepsch F. Lardeau C.H. Sdelci S. Schirghuber E. Müller A.C. Caldera M. Wagner A. Herzog R. Penz T. Schuster M. Boidol B. Dürnberger G. Folkvaljon Y. Stattin P. Ivanov V. Colinge J. Bock C. Kratochwill K. Menche J. Bennett K.L. Kubicek S. A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor. Nat. Chem. Biol. 2017 13 7 771 778 10.1038/nchembio.2382 28530711
    [Google Scholar]
  97. Fang Z. Meng Q. Xu J. Wang W. Zhang B. Liu J. Liang C. Hua J. Zhao Y. Yu X. Shi S. Signaling pathways in cancer‐associated fibroblasts: Recent advances and future perspectives. Cancer Commun. (Lond.) 2023 43 1 3 41 10.1002/cac2.12392 36424360
    [Google Scholar]
  98. Khare S. Devi S. Radian A.D. Dorfleutner A. Stehlik C. Methods to measure NLR oligomerization I: Size exclusion chromatography, co-immunoprecipitation, and cross-linking. Methods Mol. Biol. 2023 2696 55 71 10.1007/978‑1‑0716‑3350‑2_4 37578715
    [Google Scholar]
  99. Yue C. Li J. Zhang S. Ma R. Suo M. Chen Y. Jin H. Zeng Y. Chen Y. Activation of the NLRP3-CASP-1 inflammasome is restrained by controlling autophagy during Glaesserella parasuis infection. Vet. Microbiol. 2024 295 110160 10.1016/j.vetmic.2024.110160 38964034
    [Google Scholar]
  100. Makar A.N. Boraman A. Mosen P. Simpson J.E. Marques J. Michelberger T. Aitken S. Wheeler A.P. Winter D. von Kriegsheim A. Gammoh N. The V-ATPase complex component RNAseK is required for lysosomal hydrolase delivery and autophagosome degradation. Nat. Commun. 2024 15 1 7743 10.1038/s41467‑024‑52049‑3 39231962
    [Google Scholar]
  101. Qiao W. Richards C.M. Jabs S. LYSET/TMEM251- a novel key component of the mannose 6-phosphate pathway. Autophagy 2023 19 7 2143 2145 10.1080/15548627.2023.2167376 36633450
    [Google Scholar]
  102. Liu S. Yao S. Yang H. Liu S. Wang Y. Autophagy: Regulator of cell death. Cell Death Dis. 2023 14 10 648 10.1038/s41419‑023‑06154‑8 37794028
    [Google Scholar]
  103. Xia Y. Chen C. Liu Y. Ge G. Dou T. Wang P. Synthesis and structure-activity relationship of daphnetin derivatives as potent antioxidant agents. Molecules 2018 23 10 2476 10.3390/molecules23102476 30262732
    [Google Scholar]
  104. Jun S. Linhong L. Wenjuan K. Targeted lipid nanocapsule loaded with daphnetin as well as preparation method and application of targeted lipid nanocapsule. Patent C.N. 116725980, 2023
  105. Chen F. Lei L. Chen S. Zhao Z. Huang Y. Jiang G. Guo X. Li Z. Zheng Z. Wang J. Serglycin secreted by late-stage nucleus pulposus cells is a biomarker of intervertebral disc degeneration. Nat. Commun. 2024 15 1 47 10.1038/s41467‑023‑44313‑9 38167807
    [Google Scholar]
/content/journals/pra/10.2174/0115748928371118250327084127
Loading
/content/journals/pra/10.2174/0115748928371118250327084127
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test