Skip to content
2000
Volume 20, Issue 5
  • ISSN: 1574-8928
  • E-ISSN: 2212-3970

Abstract

Background

Colorectal cancer is a significant global public health challenge, contributing substantially to cancer-related mortality worldwide. Vitexin has been shown to promote the polarization of macrophages towards the M1 phenotype, a process dependent on the Vitamin D receptor. This polarization is crucial in the tumor microenvironment, as it helps mitigate the progression from chronic colitis to colorectal cancer. Despite its potential, the mechanisms of vitexin’s action and its impact on colon cancer remain unclear.

Objective

This study aims to evaluate the inhibitory effects of vitexin on cell proliferation and apoptosis in the Caco-2 colon cancer cell line, with a specific focus on its modulation of antioxidant enzyme activities, pro-apoptotic factors, and key signaling pathways involved in cell survival and proliferation.

Methods

The IC of vitexin against Caco-2 cells was determined. Cell viability and necrosis rates were assessed after 48 hours of incubation with vitexin at concentrations of 19.01, 38.01, and 76.02 µg/mL. Additionally, levels of superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), P53, Bax, TSC2, Sestrin 2, and PUMA, as well as the expression of AMPK, PI3K, Akt, and mTOR genes and proteins, were measured using q-PCR and Western blotting techniques in Caco-2 cells post-incubation.

Results

Vitexin exhibited an IC of 38.01 ± 0.64 µg/mL against Caco-2 cells. Treatment with vitexin at the specified concentrations for 48 hours resulted in a significant decrease in cell viability by 28.40%, with inhibitory rates reaching 71.6%. Apoptosis rates increased to 93.81%, 171.41%, and 294.12%, respectively, with a corresponding rise in necrosis rates by 194.19%, 400.22%, and 811.44%. Pharmacological analysis revealed that vitexin significantly inhibited SOD and CAT activities while enhancing MDA production. Furthermore, vitexin treatment upregulated the expression of key apoptotic markers (P53, Bax, TSC2, Sestrin 2, and PUMA) and the expression of AMPK, PI3K, and Akt, while downregulating mTOR genes and proteins, implicating various signaling pathways.

Conclusion

This study demonstrates that vitexin induces apoptosis in Caco-2 colon cancer cells through multiple mechanisms, including modulation of antioxidant enzymes, upregulation of pro-apoptotic factors, and regulation of key signaling pathways involved in cell survival and proliferation. These findings suggest that vitexin’s mechanisms of action involve complex interactions with various cellular pathways, making it a promising candidate for further research and potential therapeutic applications in colorectal cancer.

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928361989250226083146
2025-03-21
2026-01-02
Loading full text...

Full text loading...

References

  1. WolfA.M.D. FonthamE.T.H. ChurchT.R. Colorectal cancer screening for average‐risk adults: 2018 guideline update from the American Cancer Society.CA Cancer J. Clin.201868425028110.3322/caac.21457 29846947
    [Google Scholar]
  2. JemalA. SiegelR. WardE. HaoY. XuJ. ThunM.J. Cancer statistics, 2009.CA Cancer J. Clin.200959422524910.3322/caac.20006 19474385
    [Google Scholar]
  3. MeesterR.G.S. PeterseE.F.P. KnudsenA.B. Optimizing colorectal cancer screening by race and sex: Microsimulation analysis II to inform the American Cancer Society colorectal cancer screening guideline.Cancer2018124142974298510.1002/cncr.31542 29846942
    [Google Scholar]
  4. Abdel-WahabE.A. Al-qaimZ.H. AhmedT.H. Phloretin-nanospanlastics for targeting the Akt/PI3K signaling pathways in dimethylhydrazine-induced colon cancer in mice.Int. J. Pharm. X2024910031110.1016/j.ijpx.2024.100311
    [Google Scholar]
  5. YangQ. HuanR. MengD. QiJ. XiaL. Progress in the study of anti-tumor effects and mechanisms of vitexin.Pharmacol. Rep.202477112413410.1007/s43440‑024‑00664‑8 39477892
    [Google Scholar]
  6. LeiphrakpamP. AreC. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment.Int. J. Mol. Sci.2024256317810.3390/ijms25063178 38542151
    [Google Scholar]
  7. FrumanD.A. ChiuH. HopkinsB.D. BagrodiaS. CantleyL.C. AbrahamR.T. The PI3K pathway in human disease.Cell2017170460563510.1016/j.cell.2017.07.029 28802037
    [Google Scholar]
  8. EngelmanJ.A. Targeting PI3K signalling in cancer: Opportunities, challenges and limitations.Nat. Rev. Cancer20099855056210.1038/nrc2664 19629070
    [Google Scholar]
  9. FangD.D. ZhangC.C. GuY. Antitumor efficacy of the dual PI3K/mTOR inhibitor PF-04691502 in a human xenograft tumor model derived from colorectal cancer stem cells harboring a PIK3CA mutation.PLoS One201386e6725810.1371/journal.pone.0067258 23826249
    [Google Scholar]
  10. YuanJ. MehtaP.P. YinM.J. PF-04691502, a potent and selective oral inhibitor of PI3K and mTOR kinases with antitumor activity.Mol. Cancer Ther.201110112189219910.1158/1535‑7163.MCT‑11‑0185 21750219
    [Google Scholar]
  11. WanderS.A. ZhaoD. BesserA.H. PI3K/mTOR inhibition can impair tumor invasion and metastasis in vivo despite a lack of antiproliferative action in vitro: Implications for targeted therapy.Breast Cancer Res. Treat.2013138236938110.1007/s10549‑012‑2389‑6 23430223
    [Google Scholar]
  12. HaarE.V. LeeS. BandhakaviS. GriffinT.J. KimD.H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40.Nat. Cell Biol.20079331632310.1038/ncb1547 17277771
    [Google Scholar]
  13. NascimentoE.B.M. SnelM. GuigasB. Phosphorylation of PRAS40 on Thr246 by PKB/AKT facilitates efficient phosphorylation of Ser183 by mTORC1.Cell. Signal.201022696196710.1016/j.cellsig.2010.02.002 20138985
    [Google Scholar]
  14. MaharatiA. MoghbeliM. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells.Cell Commun. Signal.202321120110.1186/s12964‑023‑01225‑x 37580737
    [Google Scholar]
  15. JohnsonSM GulhatiP RampyBA Novel expression patterns of PI3K/Akt/mTOR signaling pathway components in colorectal cancer.J Am Coll Surg20102105767776, 776-77810.1016/j.jamcollsurg.2009.12.00820421047
    [Google Scholar]
  16. BruggeJ. HungM.C. MillsG.B. A new mutational AKTivation in the PI3K pathway.Cancer Cell200712210410710.1016/j.ccr.2007.07.014 17692802
    [Google Scholar]
  17. HippertM.M. O’TooleP.S. ThorburnA. Autophagy in cancer: Good, bad, or both?Cancer Res.200666199349935110.1158/0008‑5472.CAN‑06‑1597 17018585
    [Google Scholar]
  18. Chavez-DominguezR. Perez-MedinaM. Lopez-GonzalezJ.S. Galicia-VelascoM. Aguilar-CazaresD. The double-edge sword of autophagy in cancer: From tumor suppression to pro-tumor activity.Front. Oncol.20201057841810.3389/fonc.2020.578418 33117715
    [Google Scholar]
  19. LiX. HeS. MaB. Autophagy and autophagy-related proteins in cancer.Mol. Cancer20201911210.1186/s12943‑020‑1138‑4 31969156
    [Google Scholar]
  20. Method of producing highly porous adsorbents. Patent US20190247829A1.2019
  21. Anti-icing apparatus for a nose cone of a gas turbine engine.Patent US20180087456A1.2018
  22. Catalyst carrier and catalyst comprising same.Patent US20190247830A1.2019
  23. Preparation method and application of graphene oxide liquid crystal emulsion.Patent CN104140144A.2014
  24. Methods of treating cancer with PI3K inhibitor, gdc-0077. Patent US20210252013.2021
  25. ZhouY. LiuY.E. CaoJ. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth.Clin. Cancer Res.200915165161516910.1158/1078‑0432.CCR‑09‑0661 19671865
    [Google Scholar]
  26. BhardwajM. ChoH.J. PaulS. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells.Oncotarget2018933278329110.18632/oncotarget.22890 29423046
    [Google Scholar]
  27. BhardwajM. PaulS. JakharR. Vitexin confers HSF-1 mediated autophagic cell death by activating JNK and ApoL1 in colorectal carcinoma cells.Oncotarget201786811242611244110.18632/oncotarget.20113 29348836
    [Google Scholar]
  28. EldourghamyA. HossamT. HusseinM.A. Abdel-AzizA. El-masryS.A. Naringenin suppresses NLRP3 inflammasome activation via the mRNA-208a signaling pathway in isoproterenol-induced myocardial infarction.Asian Pac. J. Trop. Biomed.2023131044345010.4103/2221‑1691.387750
    [Google Scholar]
  29. AlamirM. HusseinM.A. AboudH.M. KhedrM.H. ZanatyM.I. Optimization of phloretin-loaded nanospanlastics for targeting of FAS/SREBP1c/AMPK/OB-Rb signaling pathway in HFD-induced obesity.Curr. Pharm. Biotechnol.20252619210710.2174/0113892010278684240105115516 38698746
    [Google Scholar]
  30. El-belbasyH.I. HusseinM.A. AlghitanyM.E. Potential effects of cranberry extract against lead acetate-induced hepato-renal toxicity in rats.Adv. Anim. Vet. Sci.202191016691683
    [Google Scholar]
  31. AmerA.A. KassemS.H. HusseinM.A. Chemical composition, antioxidant, cytotoxic, antiviral, and lung-protective activities of Salvia officinalis L. ethanol extract herb growing in Sinai, Egypt.Beni. Suef Univ. J. Basic Appl. Sci.20241313910.1186/s43088‑024‑00498‑6
    [Google Scholar]
  32. HansenM.B. NielsenS.E. BergK. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill.J. Immunol. Methods1989119220321010.1016/0022‑1759(89)90397‑9 2470825
    [Google Scholar]
  33. TampaM. NicolaeI. EneC.D. SarbuI. MateiC. GeorgescuS.R. Vitamin C, and TBARS in psoriasis vulgaris related to psoriasis area severity index (PASI).Revista de Chimie201768434710.37358/RC.17.1.5385
    [Google Scholar]
  34. AebiH. Catalase in vitro.Methods Enzymol1984105121610.1016/S0076‑6879(84)05016‑36727660
    [Google Scholar]
  35. MaiorinoF.M. Brigelius-FlohéR. AumannK.D. Diversity of glutathione peroxidases.Methods Enzymol1995252385310.1016/0076‑6879(95)52007‑4 7476373
    [Google Scholar]
  36. NishikimiM. AppajiN. YagiK. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen.Biochem. Biophys. Res. Commun.197246284985410.1016/S0006‑291X(72)80218‑3
    [Google Scholar]
  37. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  38. MorrisG.M. HueyR. LindstromW. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  39. SavojardoC. MartelliP.L. FariselliP. CasadioR. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks.Bioinformatics2021377984990 32821903
    [Google Scholar]
  40. LeeI. DodiaC. ChatterjeeS. A novel nontoxic inhibitor of the activation of NADPH oxidase reduces reactive oxygen species production in mouse lung.J. Pharmacol. Exp. Ther.2013345228429610.1124/jpet.112.201079 23475902
    [Google Scholar]
  41. SystèmesD.B.I.O.V.I.A. BIOVIA Discovery Studio Modelling Environment, Release 2022.San DiegoDassault Systèmes2022
    [Google Scholar]
  42. HuangJ. ZhouY. ZhongX. SuF. XuL. Effects of vitexin, a natural flavonoid glycoside, on the proliferation, invasion, and apoptosis of human U251 glioblastoma cells.Oxid. Med. Cell. Longev.2022202211310.1155/2022/3129155 35281458
    [Google Scholar]
  43. LeeJ.H. MohanC.D. ShanmugamM.K. Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway.Biochimie2020175586810.1016/j.biochi.2020.05.006 32445654
    [Google Scholar]
  44. WangW. ChengH. GuX. YinX. The natural flavonoid glycoside vitexin displays preclinical antitumor activity by suppressing NF-κB signaling in nasopharyngeal carcinoma.OncoTargets Ther.2019124461446810.2147/OTT.S210077 31239714
    [Google Scholar]
  45. GizawyE.H.A. Abo-SalemH.M. AliA.A. HusseinM.A. Phenolic profiling and therapeutic potential of certain isolated compounds from Parkia roxburghii against AChE activity as well as GABA A α5, GSK-3β, and p38α MAP-kinase genes.ACS Omega2021631204922051110.1021/acsomega.1c02340 34395996
    [Google Scholar]
  46. BorikR.M. HusseinM.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives.Asian J. Chem.202133242343810.14233/ajchem.2021.23036
    [Google Scholar]
  47. BoshraS.A. HusseinM.A. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats.Int. J. Phytomed.20168217227
    [Google Scholar]
  48. HusseinM.A. BorikR.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship.Curr. Pharm. Biotechnol.20222391179120310.2174/1389201022666210601170650 34077343
    [Google Scholar]
  49. MostafaM.M. AminM.M. ZakariaM.Y. HusseinM.A. ShamaaM.M. Abd El-HalimS.M. Chitosan surface-modified PLGA nanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells.Pharmaceutics202315260610.3390/pharmaceutics15020606 36839928
    [Google Scholar]
  50. SolimanM.S. MosallamS. MamdouhM.A. HusseinM.A. M Abd El-Halim S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats.Drug Deliv.202229142743910.1080/10717544.2022.2032875 35098843
    [Google Scholar]
  51. GizawyE.H.A.E.H. HusseinM.A. Abdel-SattarE. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum.Pharm. Biol.201957148549710.1080/13880209.2019.1643378 31401911
    [Google Scholar]
  52. El-gizawyH.A.E. HusseinM.A. Isolation, structure elucidation of ferulic and coumaric acids from fortunella japonica swingle leaves and their structure antioxidant activity relationship.Free Radic. Antioxid.201671233010.5530/fra.2017.1.4
    [Google Scholar]
  53. HusseinM.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet.Free Radic. Antioxid.201111496010.5530/ax.2011.1.9
    [Google Scholar]
  54. HusseinM.A. IsmailN.E.M. MohamedA.H. BorikR.M. AliA.A. MosaadY.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity.Bioinform. Biol. Insights2021151177932221105589110.1177/11779322211055891 34840499
    [Google Scholar]
  55. ShehataM.R. MohamedM.M.A. ShoukryM.M. HusseinM.A. HusseinF.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine.J. Coord. Chem.20156861101111410.1080/00958972.2015.1007962
    [Google Scholar]
  56. AbdallaM.H.Jr MohamedS.A.G. In vivo Hepato-protective properties of purslane extracts on paracetamol-induced liver damage.Malays. J. Nutr.2010161161170 22691863
    [Google Scholar]
  57. MohamadE.A. MohamedZ.N. HusseinM.A. ElneklawiM.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation.ACS Omega2022733109312010.1021/acsomega.1c06591 35097306
    [Google Scholar]
  58. GobbaN.A.E.K. AliH.A. SharawyE.D.E. HusseinM.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders.Arch. Environ. Occup. Health201873318920210.1080/19338244.2017.1314930 28375782
    [Google Scholar]
  59. El-GizawyH.A. HusseinM.A. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malva parviflora growing in Egypt.Int. J. Phytomed.20157219230
    [Google Scholar]
  60. MosaadY.O. HusseinM.A. AteyyaH. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients.J. Inflamm. Res.2022156745675910.2147/JIR.S386506 36540060
    [Google Scholar]
  61. BhardwajM. PaulS. JakharR. KangS.C. Potential role of vitexin in alleviating heat stress-induced cytotoxicity: Regulatory effect of Hsp90 on ER stress-mediated autophagy.Life Sci.2015142364810.1016/j.lfs.2015.10.012 26475763
    [Google Scholar]
  62. KumarA. DograS. PrakashA. Protective effect of naringin, a citrus flavonoid, against colchicine-induced cognitive dysfunction and oxidative damage in rats.J. Med. Food201013497698410.1089/jmf.2009.1251 20673063
    [Google Scholar]
  63. YangH. XueW. DingC. Vitexin mitigates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction via epac1‐rap1 signaling.Oxid. Med. Cell. Longev.202120211992198210.1155/2021/9921982 34257823
    [Google Scholar]
  64. DongL. FanY. ShaoX. ChenZ. Vitexin protects against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts by attenuating inflammatory response and apoptosis.Food Chem. Toxicol.201149123211321610.1016/j.fct.2011.09.040 22001368
    [Google Scholar]
  65. AliS.S. NoordinL. BakarR.A. ZainalabidinS. JubriZ. AhmadW.W.A.N. Current updates on potential role of flavonoids in hypoxia/reoxygenation cardiac injury model.Cardiovasc. Toxicol.202121860561810.1007/s12012‑021‑09666‑x 34114196
    [Google Scholar]
  66. MatteraR. BenvenutoM. GigantiM. Effects of polyphenols on oxidative stress-mediated injury in cardiomyocytes.Nutrients20179552310.3390/nu9050523 28531112
    [Google Scholar]
  67. BabaeiF. MoafizadA. DarvishvandZ. MirzababaeiM. HosseinzadehH. Nassiri-AslM. Review of the effects of vitexin in oxidative stress‐related diseases.Food Sci. Nutr.2020862569258010.1002/fsn3.1567 32566174
    [Google Scholar]
  68. KokaS. DasA. SalloumF.N. KukrejaR.C. Phosphodiesterase-5 inhibitor tadalafil attenuates oxidative stress and protects against myocardial ischemia/reperfusion injury in type 2 diabetic mice.Free Radic. Biol. Med.201360808810.1016/j.freeradbiomed.2013.01.031 23385031
    [Google Scholar]
  69. XueW. WangX. TangH. Vitexin attenuates myocardial ischemia/reperfusion injury in rats by regulating mitochondrial dysfunction induced by mitochondrial dynamics imbalance.Biomed. Pharmacother.202012410984910.1016/j.biopha.2020.109849 31972356
    [Google Scholar]
  70. SuX. ZhouM. LiY. Protective effects of natural products against myocardial ischemia/reperfusion: Mitochondria-targeted therapeutics.Biomed. Pharmacother.202214911289310.1016/j.biopha.2022.112893 35366532
    [Google Scholar]
/content/journals/pra/10.2174/0115748928361989250226083146
Loading
/content/journals/pra/10.2174/0115748928361989250226083146
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Akt; AMPK; apoptosis; Caco-2 cells; colon cancer; mTOR; p53; PI3K proteins; PUMA; Vitexin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test