Skip to content
2000
image of Effect of Oral Posaconazole on Venetoclax Plasma Concentration and its Efficacy in Patients with Acute Myeloid Leukemia

Abstract

Background

BCL-2 was the first gene identified to have antiapoptotic effects, and venetoclax is an oral selective BCL-2 inhibitor, which has great potential in the treatment of patients with acute myeloid leukemia (AML) who are not candidates for intensive therapy. Notably, posaconazole, an oral antifungal drug, is also a strong factor that can affect blood venetoclax concentrations. To the best of our knowledge, the relationship between BCL-2 expression, posaconazole, and venetoclax, as well as their influence on treatment efficacy and the prognosis of patients with AML, has not been reported.

Objectives

In this single-center retrospective study, the relationship between BCL-2 expression and blood venetoclax concentration was analyzed in 35 patients with AML. After that, we explored the differences in curative effect, adverse reactions, and outcomes between patients with different BCL-2 expression levels and patients with different venetoclax concentration levels, respectively.

Methods

BCL-2 mRNA expression levels were examined by reverse transcription quantitative PCR. Blood venetoclax concentrations were measured using high-performance liquid chromatography-tandem mass spectrometry.

Results

The results revealed that among patients with AML, those with lower primary BCL-2 expression had a higher complete remission (CR) rate ( =0.005), overall response (OR) rate ( <0.0001), and progression-free survival time ( =0.04). Posaconazole was revealed to be a strong factor that was able to increase blood venetoclax concentration ( <0.001) and CR rate in the venetoclax plus posaconazole group compared to that in the venetoclax monotherapy group ( =0.002); however, no significant difference was identified in the occurrence of adverse reactions between these groups. Among low and high-blood venetoclax concentration groups, the event-free survival of the former group was significantly higher ( =0.013).

Conclusion

Higher levels of BCL-2 expression at initial diagnosis may have adverse effects on the efficacy and prognosis of patients, and higher levels of venetoclax concentration may advance the time of adverse reactions in patients, thus adversely affecting event-free survival (EFS).

Loading

Article metrics loading...

/content/journals/pra/10.2174/0115748928330206241104161111
2025-01-08
2025-11-07
Loading full text...

Full text loading...

References

  1. Goel H. Rahul E. Gupta I. Chopra A. Ranjan A. Gupta A.K. Meena J.P. Viswanathan G.K. Bakhshi S. Misra A. Hussain S. Kumar R. Singh A. Rath G.K. Sharma A. Mittan S. Tanwar P. Molecular and genomic landscapes in secondary & therapy related acute myeloid leukemia. Am. J. Blood Res. 2021 11 5 472 497 34824881
    [Google Scholar]
  2. Weinberg O.K. Porwit A. Orazi A. Hasserjian R.P. Foucar K. Duncavage E.J. Arber D.A. The international consensus classification of acute myeloid leukemia. Virchows Arch. 2023 482 1 27 37 10.1007/s00428‑022‑03430‑4 36264379
    [Google Scholar]
  3. Perini G.F. Ribeiro G.N. Pinto Neto J.V. Campos L.T. Hamerschlak N. BCL-2 as therapeutic target for hematological malignancies. J. Hematol. Oncol. 2018 11 1 65 10.1186/s13045‑018‑0608‑2 29747654
    [Google Scholar]
  4. Handschuh L. Wojciechowski P. Kazmierczak M. Lewandowski K. Transcript-level dysregulation of BCL2 family genes in acute myeloblastic leukemia. Cancers 2021 13 13 3175 10.3390/cancers13133175 34202143
    [Google Scholar]
  5. Jin L. Chen Y. Cheng D. He Z. Shi X. Du B. Xi X. Gao Y. Guo Y. YAP inhibits autophagy and promotes progression of colorectal cancer via upregulating Bcl-2 expression. Cell Death Dis. 2021 12 5 457 10.1038/s41419‑021‑03722‑8 33963173
    [Google Scholar]
  6. Gutiérrezpuente Y. Zapatabenavides P. Tari A. Lópezberestein G. Bcl-2–related antisense therapy. Semin. Oncol. 2002 29 3 Suppl. 11 71 76 10.1016/S0093‑7754(02)70129‑2 12138400
    [Google Scholar]
  7. Daniel J.C. Smythe W.R. The role of bcl-2 family members in non-small cell lung cancer. Semin. Thorac. Cardiovasc. Surg. 2004 16 1 19 27 10.1053/j.semtcvs.2004.01.002 15366684
    [Google Scholar]
  8. Konopleva M. Pollyea D.A. Potluri J. Chyla B. Hogdal L. Busman T. McKeegan E. Salem A.H. Zhu M. Ricker J.L. Blum W. DiNardo C.D. Kadia T. Dunbar M. Kirby R. Falotico N. Leverson J. Humerickhouse R. Mabry M. Stone R. Kantarjian H. Letai A. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016 6 10 1106 1117 10.1158/2159‑8290.CD‑16‑0313 27520294
    [Google Scholar]
  9. Nwosu G.O. Ross D.M. Powell J.A. Pitson S.M. Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia. Cell Death Dis. 2024 15 6 413 10.1038/s41419‑024‑06810‑7 38866760
    [Google Scholar]
  10. Zhou J. Zhang T. Xu Z. Gu Y. Ma J. Li X. Guo H. Wen X. Zhang W. Yang L. Liu X. Lin J. Qian J. BCL2 overexpression: Clinical implication and biological insights in acute myeloid leukemia. Diagn. Pathol. 2019 14 1 68 10.1186/s13000‑019‑0841‑1 31253168
    [Google Scholar]
  11. Brackman D. Eckert D. Menon R. Salem A.H. Potluri J. Smith B.D. Wei A.H. Hayslip J. Miles D. Mensing S. Gopalakrishnan S. Zha J. Venetoclax exposure‐efficacy and exposure‐safety relationships in patients with treatment‐naïve acute myeloid leukemia who are ineligible for intensive chemotherapy. Hematol. Oncol. 2022 40 2 269 279 10.1002/hon.2964 35043428
    [Google Scholar]
  12. Konopleva M. Pollyea D.A. Potluri J. Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelo elevated expression genous leukemia. Cancer Discov. 2016 6 10 1106 1117 10.1158/2159‑8290.CD‑16‑0313 27520294
    [Google Scholar]
  13. Punnoose E.A. Leverson J.D. Peale F. Boghaert E.R. Belmont L.D. Tan N. Young A. Mitten M. Ingalla E. Darbonne W.C. Oleksijew A. Tapang P. Yue P. Oeh J. Lee L. Maiga S. Fairbrother W.J. Amiot M. Souers A.J. Sampath D. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol. Cancer Ther. 2016 15 5 1132 1144 10.1158/1535‑7163.MCT‑15‑0730 26939706
    [Google Scholar]
  14. Arber D.A. Orazi A. Hasserjian R. Thiele J. Borowitz M.J. Le Beau M.M. Bloomfield C.D. Cazzola M. Vardiman J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016 127 20 2391 2405 10.1182/blood‑2016‑03‑643544 27069254
    [Google Scholar]
  15. Scheffold A. Jebaraj B.M.C. Stilgenbauer S. Venetoclax: Targeting BCL2 in hematological cancers. Recent Results Cancer Res. 2018 212 215 242 10.1007/978‑3‑319‑91439‑8_11 30069633
    [Google Scholar]
  16. Lee J.B. Khan D.H. Hurren R. Xu M. Na Y. Kang H. Mirali S. Wang X. Gronda M. Jitkova Y. MacLean N. Arruda A. Alaniz Z. Konopleva M.Y. Andreeff M. Minden M.D. Zhang L. Schimmer A.D. Venetoclax enhances T cell–mediated antileukemic activity by increasing ROS production. Blood 2021 138 3 234 245 10.1182/blood.2020009081 34292323
    [Google Scholar]
  17. He H. Wen X. Zheng H. Efficacy and safety of venetoclax-based combination therapy for previously untreated acute myeloid leukemia: A meta-analysis. Hematology 2024 29 1 2343604 10.1080/16078454.2024.2343604 38703055
    [Google Scholar]
  18. Kung H.C. Johnson M.D. Drew R.H. Saha-Chaudhuri P. Perfect J.R. Clinical effectiveness of posaconazole versus fluconazole as antifungal prophylaxis in hematology–oncology patients: A retrospective cohort study. Cancer Med. 2014 3 3 667 673 10.1002/cam4.225 24644249
    [Google Scholar]
  19. Wang C.H. Kan L.P. Lin H.A. Chang F.Y. Wang N.C. Lin T.Y. Chao T.Y. Kao W.Y. Ho C.L. Chen Y.C. Dai M.S. Chang P.Y. Wu Y.Y. Lin J.C. Clinical efficacy and safety of primary antifungal prophylaxis with posaconazole versus fluconazole in allogeneic blood hematopoietic stem cell transplantation recipients—A retrospective analysis of a single medical center in Taiwan. J. Microbiol. Immunol. Infect. 2016 49 4 531 538 10.1016/j.jmii.2014.07.009 25440977
    [Google Scholar]
  20. Xin F. Yu Y.H. Shen X.L. Zhang G.X. The efficacy of the combination of venetoclax and hypomethylating agents versus HAG agents in patients with acute myeloid leukemia: A retrospective study. Hematology 2024 29 1 2350319 10.1080/16078454.2024.2350319 38748459
    [Google Scholar]
  21. Ball B. Mei M. Otoukesh S. Stein A. Current and emerging therapies for acute myeloid leukemia. Cancer Treat. Res. 2021 181 57 73 10.1007/978‑3‑030‑78311‑2_4 34626355
    [Google Scholar]
  22. Yue X. Chen Q. He J. Combination strategies to overcome resistance to the BCL2 inhibitor venetoclax in hematologic malignancies. Cancer Cell Int. 2020 20 1 524 10.1186/s12935‑020‑01614‑z 33292251
    [Google Scholar]
  23. Acker F. Chromik J. Tiedjen E. Wolf S. Vischedyk J.B. Makowka P. Enßle J.C. Kouidri K. Sebastian M. Steffen B. Oellerich T. Serve H. Neubauer A. Schäfer J.A. Bittenbring J.T. Real‐world effectiveness of first‐line azacitidine or decitabine with or without venetoclax in acute myeloid leukemia patients unfit for intensive therapy. Eur. J. Haematol. 2024 ejh.14278 10.1111/ejh.14278 39023132
    [Google Scholar]
  24. Miklos E. Oliver T.P. Adam K. Eva K. Balazs K. Eszter K. Anett P. Viktoria G.K. Jozsef H. Peter R. Fix low dose venetoclax‐azacitidine treatment of unfit acute myeloid leukemia patients. Eur. J. Haematol. 2024 113 2 183 189 10.1111/ejh.14213 38644361
    [Google Scholar]
  25. Qureshi Z. Altaf F. Jamil A. Siddique R. Safety, efficacy, and predictive factors of venetoclax-based regimens in elderly acute myeloid leukemia patients: A meta-analysis. Clin. Lymphoma Myeloma Leuk. 2024 S2152-2650(24)00261-1 10.1016/j.clml.2024.07.004 39218712
    [Google Scholar]
  26. LeBlanc F.R. Breese E.H. Burns K.C. Chang E.K. Jones L.M. Lee L. Mizukawa B. Norris R.E. O’Brien M.M. Phillips C.L. Perentesis J.P. Rubinstein J. Pommert L. Clinical outcomes of hypomethylating agents and venetoclax in newly diagnosed unfit and relapsed/refractory paediatric, adolescent and young adult acute myeloid leukaemia patients. Br. J. Haematol. 2024 bjh.19679 10.1111/bjh.19679 39082439
    [Google Scholar]
  27. Jian X. Cha J. Lin Z. Xie S. Huang Y. Lin Y. Zhao H. Xu B. Luo Y. Real-world experience with venetoclax-based therapy for patients with myeloid sarcoma. Discov. Oncol. 2024 15 1 210 10.1007/s12672‑024‑01068‑z 38834922
    [Google Scholar]
  28. Senapati J. Kantarjian H.M. Bazinet A. Reville P. Short N.J. Daver N. Borthakur G. Bataller A. Jabbour E. DiNardo C. Haddad F. Sasaki K. Popat U. Oran B. Alousi A.M. Loghavi S. Shpall E. Garcia-Manero G. Ravandi F. Kadia T.M. Lower intensity therapy with cladribine/low dose cytarabine/venetoclax in older patients with acute myeloid leukemia compares favorably with intensive chemotherapy among patients undergoing allogeneic stem cell transplantation. Cancer 2024 130 19 3333 3343 10.1002/cncr.35388 38809547
    [Google Scholar]
  29. Agarwal S.K. DiNardo C.D. Potluri J. Dunbar M. Kantarjian H.M. Humerickhouse R.A. Wong S.L. Menon R.M. Konopleva M.Y. Salem A.H. Management of venetoclax-posaconazole interaction in acute myeloid leukemia patients: Evaluation of dose adjustments. Clin. Ther. 2017 39 2 359 367 10.1016/j.clinthera.2017.01.003 28161120
    [Google Scholar]
  30. Cheung T.T. Salem A.H. Menon R.M. Munasinghe W.P. Bueno O.F. Agarwal S.K. Pharmacokinetics of the BCL‐2 inhibitor venetoclax in healthy chinese subjects. Clin. Pharmacol. Drug Dev. 2018 7 4 435 440 10.1002/cpdd.395 29058801
    [Google Scholar]
  31. Zhang Q. Riley-Gillis B. Han L. Jia Y. Lodi A. Zhang H. Ganesan S. Pan R. Konoplev S.N. Sweeney S.R. Ryan J.A. Jitkova Y. Dunner K. Jr Grosskurth S.E. Vijay P. Ghosh S. Lu C. Ma W. Kurtz S. Ruvolo V.R. Ma H. Weng C.C. Ramage C.L. Baran N. Shi C. Cai T. Davis R.E. Battula V.L. Mi Y. Wang J. DiNardo C.D. Andreeff M. Tyner J.W. Schimmer A. Letai A. Padua R.A. Bueso-Ramos C.E. Tiziani S. Leverson J. Popovic R. Konopleva M. Activation of RAS/MAPK pathway confers MCL-1 mediated acquired resistance to BCL-2 inhibitor venetoclax in acute myeloid leukemia. Signal Transduct. Target. Ther. 2022 7 1 51 10.1038/s41392‑021‑00870‑3 35185150
    [Google Scholar]
  32. Lasica M. Anderson M.A. Review of venetoclax in CLL, AML and multiple myeloma. J. Pers. Med. 2021 11 6 463 10.3390/jpm11060463 34073976
    [Google Scholar]
  33. Salem A.H. Dave N. Marbury T. Hu B. Miles D. Agarwal S.K. Bueno O.F. Menon R.M. Pharmacokinetics of the BCL-2 inhibitor venetoclax in subjects with hepatic impairment. Clin. Pharmacokinet. 2019 58 8 1091 1100 10.1007/s40262‑019‑00746‑4 30949874
    [Google Scholar]
  34. Salem A.H. Dunbar M. Agarwal S.K. Pharmacokinetics of venetoclax in patients with 17p deletion chronic lymphocytic leukemia. Anticancer Drugs 2017 28 8 911 914 10.1097/CAD.0000000000000522 28562380
    [Google Scholar]
  35. Chiney M.S. Menon R.M. Bueno O.F. Tong B. Salem A.H. Clinical evaluation of P-glycoprotein inhibition by venetoclax: A drug interaction study with digoxin. Xenobiotica 2018 48 9 904 910 10.1080/00498254.2017.1381779 29027832
    [Google Scholar]
  36. Salem A.H. Agarwal S.K. Dunbar M. Enschede S.L.H. Humerickhouse R.A. Wong S.L. Pharmacokinetics of venetoclax, a novel BCL‐2 inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or non‐hodgkin lymphoma. J. Clin. Pharmacol. 2017 57 4 484 492 10.1002/jcph.821 27558232
    [Google Scholar]
  37. Bennett J.M. Catovsky D. Daniel M.T. Flandrin G. Galton D.A.G. Gralnick H.R. Sultan C. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br. J. Haematol. 1976 33 4 451 458 10.1111/j.1365‑2141.1976.tb03563.x 188440
    [Google Scholar]
  38. Chatzikalil E. Roka K. Diamantopoulos P.T. Rigatou E. Avgerinou G. Kattamis A. Solomou E.E. Venetoclax combination treatment of acute myeloid leukemia in adolescents and young adult patients. J. Clin. Med. 2024 13 7 2046 10.3390/jcm13072046 38610812
    [Google Scholar]
  39. Common terminology criteria for adverse events (CTCAE). 2024 Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm
  40. Pistilli B. Bellettini G. Giovannetti E. Codacci-Pisanelli G. Azim H.A. Jr Benedetti G. Sarno M.A. Peccatori F.A. Chemotherapy, targeted agents, antiemetics and growth-factors in human milk: How should we counsel cancer patients about breastfeeding? Cancer Treat. Rev. 2013 39 3 207 211 10.1016/j.ctrv.2012.10.002 23199900
    [Google Scholar]
  41. Döhner H. Estey E. Grimwade D. Amadori S. Appelbaum F.R. Büchner T. Dombret H. Ebert B.L. Fenaux P. Larson R.A. Levine R.L. Lo-Coco F. Naoe T. Niederwieser D. Ossenkoppele G.J. Sanz M. Sierra J. Tallman M.S. Tien H.F. Wei A.H. Löwenberg B. Bloomfield C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017 129 4 424 447 10.1182/blood‑2016‑08‑733196 27895058
    [Google Scholar]
  42. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  43. Wang L. Dai Y.C. Li M. HPLC ⁃MS/MS method for the determination of plasma Venetoclax concentration in patients with hematological diseases[J] Mol. Diagn. Ther. 2021 13 03 413 417
    [Google Scholar]
  44. Vogeser M. Seger C. A decade of HPLC–MS/MS in the routine clinical laboratory — Goals for further developments. Clin. Biochem. 2008 41 9 649 662 10.1016/j.clinbiochem.2008.02.017 18374660
    [Google Scholar]
  45. O’Halloran S. Ilett K.F. Evaluation of a deuterium-labeled internal standard for the measurement of sirolimus by high-throughput HPLC electrospray ionization tandem mass spectrometry. Clin. Chem. 2008 54 8 1386 1389 10.1373/clinchem.2008.103952 18664442
    [Google Scholar]
  46. Zhang H. Nakauchi Y. Köhnke T. Stafford M. Bottomly D. Thomas R. Wilmot B. McWeeney S.K. Majeti R. Tyner J.W. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. Cancer 2020 1 8 826 839 10.1038/s43018‑020‑0103‑x 33123685
    [Google Scholar]
  47. Karakas T. Miething C.C. Maurer U. Weidmann E. Ackermann H. Hoelzer D. Bergmann L. The coexpression of the apoptosis-related genes bcl-2 and wt1 in predicting survival in adult acute myeloid leukemia. Leukemia 2002 16 5 846 854 10.1038/sj.leu.2402434 11986946
    [Google Scholar]
  48. Bilbao-Sieyro C. Rodríguez-Medina C. Florido Y. Stuckey R. Sáez M.N. Sánchez-Sosa S. González Martín J.M. Santana G. González-Pérez E. Cruz-Cruz N. Fernández R. Molero Labarta T. Gomez-Casares M.T. BCL2 expression at post-induction and complete remission impact outcome in acute myeloid leukemia. Diagnostics 2020 10 12 1048 10.3390/diagnostics10121048 33291851
    [Google Scholar]
  49. El-Shakankiry N.H. El-Sayed G.M. El-Maghraby S. Moneer M.M. Bcl-2 protein expression in egyptian acute myeloid leukemia. J. Egypt. Natl. Canc. Inst. 2009 21 1 71 76 20601973
    [Google Scholar]
  50. Mehta S.V. Shukla S.N. Vora H.H. Overexpression of Bcl2 protein predicts chemoresistance in acute myeloid leukemia: Its correlation with FLT3. Neoplasma 2014 60 6 666 675 10.4149/neo_2013_085 23906301
    [Google Scholar]
  51. Mattiuzzi G. Yilmaz M. Kantarjian H. Borthakur G. Konopleva M. Jabbour E. Brown Y. Pierce S. Cortes J. Pharmacokinetics of posaconazole prophylaxis of patients with acute myeloid leukemia. J. Infect. Chemother. 2015 21 9 663 667 10.1016/j.jiac.2015.05.011 26141814
    [Google Scholar]
  52. Kobayashi T. Sato H. Miura M. Fukushi Y. Kuroki W. Ito F. Teshima K. Watanabe A. Fujishima N. Kobayashi I. Kameoka Y. Takahashi N. Overexposure to venetoclax is associated with prolonged-duration of neutropenia during venetoclax and azacitidine therapy in Japanese patients with acute myeloid leukemia. Cancer Chemother. Pharmacol. 2024 94 2 285 296 10.1007/s00280‑024‑04673‑5 38782790
    [Google Scholar]
  53. Baba Y. Hida N. Sambe T. Abe M. Kabasawa N. Sakai H. Yoshimura K. Fukuda T. Efficacy of venetoclax and azacitidine in acute myeloid leukemia compared to azacitidine monotherapy: Real-world experience. Anticancer Res. 2024 44 5 2003 2007 10.21873/anticanres.17003 38677735
    [Google Scholar]
  54. Sekeres M.A. Guyatt G. Abel G. Alibhai S. Altman J.K. Buckstein R. Choe H. Desai P. Erba H. Hourigan C.S. LeBlanc T.W. Litzow M. MacEachern J. Michaelis L.C. Mukherjee S. O’Dwyer K. Rosko A. Stone R. Agarwal A. Colunga-Lozano L.E. Chang Y. Hao Q. Brignardello-Petersen R. American society of hematology 2020 guidelines for treating newly diagnosed acute myeloid leukemia in older adults. Blood Adv. 2020 4 15 3528 3549 10.1182/bloodadvances.2020001920 32761235
    [Google Scholar]
  55. Tiribelli M. Michelutti A. Cavallin M. Di Giusto S. Simeone E. Fanin R. Damiani D. BCL-2 expression in AML patients over 65 years: Impact on outcomes across different therapeutic strategies. J. Clin. Med. 2021 10 21 5096 10.3390/jcm10215096 34768616
    [Google Scholar]
  56. Winters A.C. Gutman J.A. Purev E. Nakic M. Tobin J. Chase S. Kaiser J. Lyle L. Boggs C. Halsema K. Schowinsky J.T. Rosser J. Ewalt M.D. Siegele B. Rana V. Schuster S. Abbott D. Stevens B.M. Jordan C.T. Smith C. Pollyea D.A. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019 3 20 2911 2919 10.1182/bloodadvances.2019000243 31648312
    [Google Scholar]
  57. Jiménez-Vicente C. Guardia-Torrelles A. Pérez-Valencia A.I. Martínez-Roca A. Castaño-Diez S. Guijarro F. Cortés-Bullich A. Merchán B. Triguero A. Hernández I. Brillembourg H. Munárriz D. Zugasti I. Fernández-Avilés F. Diaz-Beyá M. Esteve J. Clinical management of patients diagnosed with acute myeloid leukemia treated with venetoclax in combination with hypomethylating agents after achieving a response: a real-life study. Ann. Hematol. 2024 10.1007/s00277‑024‑05923‑5 39207559
    [Google Scholar]
  58. Eduardo S Stefan E Steven M Methods relating to optimizing therapy selection acute myeloid leukemia: U.S. PCT/US2023/078518 2024 Available from: https://patentscope.wipo.int/search/ar/detail.jsf;jsessionid=2CD326D5E7B7E20D70981B3140F8CEDB.wapp2nA?docId=WO2024097876&_cid=P20-LW0IY8-66341-76
  59. Yang M. Wang L. Ni M. Neuber B. Wang S. Gong W. Sauer T. Sellner L. Schubert M.L. Hückelhoven-Krauss A. Hong J. Zhu L. Kleist C. Eckstein V. Müller-Tidow C. Dreger P. Schmitt M. Schmitt A. Pre-sensitization of malignant B cells through venetoclax significantly improves the cytotoxic efficacy of CD19.CAR-T cells. Front. Immunol. 2020 11 608167 10.3389/fimmu.2020.608167 33362794
    [Google Scholar]
  60. Otsuki A. Kumondai M. Kobayashi D. Kikuchi M. Ueki Y. Sato Y. Hayashi N. Yagi A. Onishi Y. Onodera K. Ichikawa S. Fukuhara N. Yokoyama H. Maekawa M. Mano N. Plasma venetoclax concentrations in patients with acute myeloid leukemia treated with CYP3A4 inhibitors. Yakugaku Zasshi 2024 144 7 775 779 10.1248/yakushi.24‑00018 38945852
    [Google Scholar]
  61. Sastow D. Levavi H. Wagner N. Pratz K. Tremblay D. Ven the dose matters: Venetoclax dosing in the frontline treatment of AML. Blood Rev. 2024 ••• 101238 10.1016/j.blre.2024.101238 39217050
    [Google Scholar]
  62. Boisclair S. Zhou E. Naing P. Thakur R. Jou E. Goldberg B. Gladstone D.E. Allen S.L. Kolitz J.E. Chitty D.W. Less is more: An analysis of venetoclax and hypomethylating agent post-induction treatment modifications in AML. Leuk. Res. 2024 143 107545 10.1016/j.leukres.2024.107545 38963990
    [Google Scholar]
  63. Garciaz S. Dumas P.Y. Bertoli S. Sallman D.A. Decroocq J. Belhabri A. Orvain C. Aspas Requena G. Simand C. Laribi K. Carré M. Santagostino A. Himberlin C. Peterlin P. Bonnet S. Chan O. Lancet J. Komrokji R. Vergez F. Chapuis N. Raskovalova T. Plesa A. Lhoumeau A.C. Mineur A. Hospital M.A. Pigneux A. Vey N. Récher C. Outcomes of acute myeloid leukemia patients who responded to venetoclax and azacitidine and stopped treatment. Am. J. Hematol. 2024 99 10 1870 1876 10.1002/ajh.27417 38899566
    [Google Scholar]
  64. Page D. Sawler D. Brandwein J. Successful treatment of aml using non-intensive chemotherapy in jehovah’s witness patients. Leuk. Res. Rep. 2024 22 100477 10.1016/j.lrr.2024.100477 39238534
    [Google Scholar]
  65. Zhu J. Fan J. Xie T. Zhao H. Lu R. Zhang Y. Li Y. Xie X. Wan D. Jiang Z. He F. Guo R. Venetoclax combined chemotherapy versus chemotherapy alone for acute myeloid leukemia: A systematic review and meta-analysis. Front. Oncol. 2024 14 1361988 10.3389/fonc.2024.1361988 38595818
    [Google Scholar]
  66. Bogenberger J.M. Kornblau S.M. Pierceall W.E. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leuk. Lymphoma 2015 56 1 226 229 10.3109/10428194.2014.910657 24707940
    [Google Scholar]
  67. Siblany L. Gaugler B. Stocker N. Ricard L. Ye Y. Mohty M. Malard F. Venetoclax does not impair activated T-cell proliferation. Bone Marrow Transplant. 2021 56 7 1740 1742 10.1038/s41409‑021‑01245‑6 33686250
    [Google Scholar]
  68. Kohlhapp F.J. Haribhai D. Mathew R. Duggan R. Ellis P.A. Wang R. Lasater E.A. Shi Y. Dave N. Riehm J.J. Robinson V.A. Do A.D. Li Y. Orr C.J. Sampath D. Raval A. Merchant M. Bhathena A. Salem A.H. Hamel K.M. Leverson J.D. Donawho C. Pappano W.N. Uziel T. Venetoclax increases intratumoral effector T cells and antitumor efficacy in combination with immune checkpoint blockade. Cancer Discov. 2021 11 1 68 79 10.1158/2159‑8290.CD‑19‑0759 32887697
    [Google Scholar]
  69. Rong C. Yang F. Chen Y. Wang M. Ai C. Luo Y. Gao P. Weng Y. Huang X. Gu M. Huang W. Xia Y. Low‑dose venetoclax combined with azacitidine in older and frail patients with newly diagnosed acute myeloid leukaemia. Oncol. Lett. 2024 27 5 228 10.3892/ol.2024.14362 38586209
    [Google Scholar]
  70. Maiti A. Konopleva M.Y. How we incorporate venetoclax in treatment regimens for acute myeloid leukemia. Cancer J. 2022 28 1 2 13 10.1097/PPO.0000000000000567 35072368
    [Google Scholar]
  71. Pan R. Hogdal L.J. Benito J.M. Bucci D. Han L. Borthakur G. Cortes J. DeAngelo D.J. Debose L. Mu H. Döhner H. Gaidzik V.I. Galinsky I. Golfman L.S. Haferlach T. Harutyunyan K.G. Hu J. Leverson J.D. Marcucci G. Müschen M. Newman R. Park E. Ruvolo P.P. Ruvolo V. Ryan J. Schindela S. Zweidler-McKay P. Stone R.M. Kantarjian H. Andreeff M. Konopleva M. Letai A.G. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014 4 3 362 375 10.1158/2159‑8290.CD‑13‑0609 24346116
    [Google Scholar]
  72. Manda S. Anz B.M. III Benton C. Broun E.R. Yimer H.A. Renshaw J.S. Geils G. Jr Berdeja J. Cruz J. Melear J.M. Fanning S. Fletcher L. Li Y. Duan Y. Werner M.E. Potluri J. Pai M.V. Donnellan W.B. A phase 3b study of venetoclax and azacitidine or decitabine in an outpatient setting in patients with acute myeloid leukemia. Hematol. Oncol. 2024 42 3 e3274 10.1002/hon.3274 38711253
    [Google Scholar]
  73. Fu Q. Wang Y. Liu H. Gao H. Sun W. Jiang Q. Jiang H. Liu K. Huang X. Tang F. Triplet therapy with gilteritinib, venetoclax, and azacitidine for relapsed/refractory FLT3 acute myeloid leukemia. Leuk. Res. 2024 145 107564 10.1016/j.leukres.2024.107564 39180903
    [Google Scholar]
  74. Döhner H. Pratz K.W. DiNardo C.D. Wei A.H. Jonas B.A. Pullarkat V. Thirman M.J. Récher C. Schuh A.C. Babu S. Li X. Ku G. Liu Z. Sun Y. Potluri J. Dail M. Chyla B. Pollyea D.A. Genetic risk stratification and outcomes among treatment-naive patients with AML treated with venetoclax and azacitidine. Blood 2024 blood.2024024944 10.1182/blood.2024024944 39133921
    [Google Scholar]
/content/journals/pra/10.2174/0115748928330206241104161111
Loading
/content/journals/pra/10.2174/0115748928330206241104161111
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: BCL-2 inhibitor ; BCL-2 expression ; venetoclax ; posaconazole ; Acute myeloid leukemia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test