Protein and Peptide Letters - Volume 29, Issue 2, 2022
Volume 29, Issue 2, 2022
-
-
Human Defensins from Antivirals to Vaccine Adjuvants: Rediscovery of the Innate Immunity Arsenal
Authors: Luisa Zupin and Sergio CrovellaHuman defensins are a class of antimicrobial peptides, belonging to the innate immunity system. These peptides are expressed at the level of respiratory tract (both upper and lower) where they represent the first line of defense against pathogens; they are also known for their activity against different viruses, acting through diverse mechanisms, including direct binding to the virus, inhibition of viral replication, and aggregation of virions. It has been recently reported they are also effective against SARS-CoV-2. Moreover, they influence the immune response stimulating it in the challenge against microorganisms. An intriguingly potential application of defensin is related to their use as vaccine adjuvants; indeed, some in silico studies suggested their efficacy in boosting the immune response. Since the long-term persistence of acquired immunity against SARS-CoV-2 triggered by the currently employed vaccines is not known, natural agents with enhancing effects, such as defensins, administered with the vaccine, can be an interesting and attractive alternative.
-
-
-
N-Terminal Pro-C-Type Natriuretic Peptide: The Novel Marker in Selected Disease Units
More LessAmino-terminal pro-C-type natriuretic peptide (NT-proCNP) is the N-terminal fragment of the CNP precursor. NT-proCNP occurs in an equimolar concentration with CNP in human plasma and is considered to be a marker of the extent of CNP biosynthesis. A recent study has shown associations between plasma NT-proCNP and blood pressure; it is also an independent predictor of death and cardiac readmission in people with unstable angina. Beyond that, recent studies have focused on the applicability of assessing NT-proCNP peptide levels in the diagnosis of diseases with different etiologies but the same denominator, i.e., inflammation. This study reviewed recent results on the usability of NT-proCNP peptide levels in the diagnosis of diseases accompanied by statistical analysis of previously reported results. The data obtained confirmed the applicability of the assessment of NT-proCNP levels in biological fluids in diseases, such as Parkinson's disease, sepsis, meningitis, and asthenozoospermia. The reported results demonstrated that NT-proCNP is helpful in a variety of diseases. Furthermore, changes in serum or CSF levels of NT-proCNP reflect only inflammatory states related to general inflammation. Local inflammation does not trigger an increase in NT-proCNP level.
-
-
-
Microbial Cold Shock Proteins: Overview of their Function and Mechanism of Action
Authors: Yonghong Zhang, Changjie Bao, Lijun Shen, Chunjie Tian, Xueli Zang, Guang Chen and Sitong ZhangThe organism responds to a decrease in temperature by producing a series of cold shock proteins (CSPs). These proteins play a critical role in growing and functioning characteristics at low temperatures. CSPs have been discovered in a wide range of organisms and have shown enormous diversity; their mechanisms of action are also complicated. Transcription and translation in microorganisms typically occur via a single linear chain, but upon exposure to low temperatures, RNA forms a complex secondary structure that prevents ribosomes from binding to it, thus slowing down translation. CSPs bind to mRNA as RNA molecular chaperones to keep the mRNA secondary structure in a single-stranded linear conformation, allowing successful translation at low temperatures.
-
-
-
The Prepropalustrin-2CE2 and Preprobrevinin-2CE3 Gene from Rana chensinensis: Gene Expression, Genomic Organization and Functional Analysis of the Promoter Activity
Authors: Ruifen Zhang, Jing Gao, Hui Xie, Yan Sun, Yuan Zhang, Jing Song, Nanshu Xiang and Zhi LiBackground: For amphibians, antimicrobial peptides are innate immune molecules that resist adverse external environmental stimuli. However, the regulation mechanism of antimicrobial peptide gene expression in frogs is still unclear. Objective: The two antimicrobial peptides, palustrin-2CE2 and brevinin-2CE3, are produced under external stimulation in Rana chensinensis. Using this model, we analyzed the gene structure and regulatory elements of the two antimicrobial peptide genes and explored the regulatory effects of related transcription factors on the two genes. Methods: Different stimuli such as E. coli, S. aureus, and chemical substance lipopolysaccharide (LPS) were applied to Rana chensinensis tadpoles at different developmental stages, and antimicrobial peptide expression levels were detected by RT-PCR. Bioinformatics analysis and 5'-RACE and genome walking technologies were employed to analyze the genome structure and promoter region of the antimicrobial peptide genes. With dual-luciferase reporter gene assays, yeast one-hybrid experiment and EMSA assays, we assessed the regulatory effect of the endogenous regulators of the cell on the antimicrobial peptide promoter. Results: The transcription levels of prepropalustrin-2CE2 and preprobrevinin-2CE3 were significantly upregulated after different stimulations. Genomic structure analysis showed that both genes contained three exons and two introns. Promoter analysis indicated that there are binding sites for regulatory factors of the NF-ΚB family in the promoter region, and experiments showed that endogenous NF-ΚB family regulatory factors in frog cells activate the promoters of the antimicrobial peptide genes. Yeast one-hybrid experiment and EMSA assay demonstrated that RelA and NF-ΚB1 might interact with specific motifs in the prepropalustrin-2CE2 promoter. Conclusion: In this paper, we found that the gene expression levels of the antimicrobial peptides, palustrin-2CE2 and brevinin-2CE3, in R. chensinensis will increase under environmental stimuli, and we verified that the changes in gene expression levels are affected by the transcription factors RelA and NF-ΚB1. The yeast one-hybrid experiment and EMSA assay confirmed that RelA and NF-ΚB1 could directly interact with the frog antimicrobial peptide gene promoter, providing new data for the regulatory mechanism of antimicrobial peptides in response to environmental stimuli.
-
-
-
Cloning, Prokaryotic Expression, and Purification of Acetyl-CoA C-Acetyltransferase from Atractylodes lancea
Authors: Junxian Wu, Weiwei Liu, Jimei Lu, Rui Xu, Jin Xie and Liangping ZhaBackground: Cangzhu (Atractylodes lancea), a valuable and common traditional Chinese medicinal herb, is primarily used as an effective medicine with various health-promoting effects. The main pharmacological bioactive ingredients in the rhizome of A. lancea are terpenoids. Acetyl-CoA C-acetyltransferase (AACT) is the first enzyme in the terpenoid synthesis pathway and catalyzes two units of acetyl-CoA into acetoacetyl-CoA. Objective: The objective of the present work was to clone and identify function of AlAACT from Atractylodes lancea. Methods: A full-length cDNA clone of AlAACT was isolated using PCR and expressed in Escherichia coli. The expressed protein was purified using Ni-NTA agarose column using standard protocols. AlAACT was transiently expressed in N. benthamiana leaves to determine their subcellular location. The difference in growth between recombinant bacteria and control bacteria under different stresses was observed using the droplet plate experiment. Results: In this study, a full-length cDNA of AACT (AlAACT) was cloned from A. lancea, which contains a 1,227 bp open reading frame and encodes a protein with 409 amino acids. Bioinformatic and phylogenetic analysis clearly suggested that AlAACT shared high similarity with AACTs from other plants. The recombinant protein pET32a(+)/AlAACT was successfully expressed in Escherichia coli BL21 (DE3) cells induced with 0.4 mM IPTG at 30°C as the optimized condition. The recombinant enzyme pET-32a-AlAACT was purified using the Ni-NTA column based on the His-tag, and the molecular weight was determined to be 62 kDa through SDS-PAGE and Western Blot analysis. The recombinant protein was eluted with 100, 300, and 500 mM imidazole; most of the protein was eluted with 300 mM imidazole. Under mannitol stress, the recombinant pET-32a- AlAACT protein showed a substantial advantage in terms of growth rates compared to the control. However, this phenomenon was directly opposite under NaCl abiotic stress. Subcellular localization showed that AlAACT localizes to the nucleus and cytoplasm. Conclusion: The expression and purification of recombinant enzyme pET-32a-AlAACT were successful, and the recombinant strain pET-32a-AlAACT in showed better growth in a drought stress. The expression of AlAACT-EGFP fusion protein revealed its localization in both nuclear and cytoplasm compartments. This study provides an important foundation for further research into the effects of terpenoid biosynthesis in A. lancea.
-
-
-
Tannic Acid Exhibits Adjuvant Activity by Enhancing Humoral and Cell-Mediated Immunity Against BSA as a Protein Antigen
Authors: Nidia Cabral-Hipólito, Brenda Sarahí Molina-Ramírez, Irais Castillo-Maldonado, Rocío Meza-Velázquez, Rubén García-Garza, Sergio-Everardo Velázquez Gauna, Dealmy Delgadillo-Guzmán, Alejandro Hernández-Herrera, Agustina Ramírez-Moreno, Jorge H. S. Cruz, Perla-Karina Espino-Silva and David Pedroza-EscobarBackground: Immunization or vaccination is the process of inducing artificial immunity against an antigen taking advantage of the mechanisms of immunological memory. Current vaccines include substances known as adjuvants, which tend to improve the immunogenicity of the antigen, reduce the antigen quantity employed, and boost the immune response in weak responders. Unfortunately, only a few vaccine adjuvants are approved for human use. Objective: Thus, the objective of this study was to investigate the effect of Tannic acid on humoral and cell-mediated immunity against bovine serum albumin (BSA) as a protein antigen in Wistar rats. Methods: In order to establish the Tannic acid concentration to test it as an adjuvant, the lethal dose 50 and maximum non-toxic dose were calculated through cytotoxicity and hemolytic assays with J774 A.1 cell line and rat erythrocytes by resazurin reduction method and UV/vis spectrophotometry. Thirty Wistar rats were divided into 5 groups that included two controls without antigen and three treatment groups of adjuvants plus BSA as a protein antigen. The rats were immunized in a 30-day scheme. Blood samples were collected for humoral immunity analysis by means of immunoglobulin quantification, isotyping and antigen-antibody precipitation inhibition analysis. Rat peritoneal macrophages and splenocytes were isolated for cell-mediated immunity analysis by means of nitric oxide quantification from adjuvant stimulated peritoneal macrophages and lymphocytes proliferation assay. Results: Tannic acid was capable of increasing the immunogenicity of the antigen; besides, it was able to stimulate cell-mediated immunity by means of increased lymphocyte proliferation. Moreover, Tannic acid improved the humoral response by means of increased specific antibodies titers. These activities may be attributed to pattern recognition receptors stimulation. Conclusion: Tannic acid was considered biocompatible when tested in vivo because the concentration tested did not show cytotoxicity or hemolytic effect, and there was no detrimental effect observed on the animals’ health. These results show Tannic acid as a promising candidate for vaccine adjuvant.
-
-
-
Construction and Evaluation of Recombinant Chimeric Fibrillin and Elastin Fragment in Human Mesenchymal Stem Cells
Authors: Eui-Seung Jeong, Bo-Hyun Park, Sujin Lee and Jun-Hyeog JangBackground: Diverse extracellular matrix (ECM) proteins physically interact with stem cells and regulate stem cell function. However, the large molecular weight of the natural ECM renders large-scale fabrication of a similar functional structure challenging. Objective: The objective of this study was to construct a low molecular weight and multifunctional chimeric form of recombinant ECM to stimulate mesenchymal stem cell (MSC) for tissue repair. We engineered Fibrillin-1PF14 fused to an elastin-like polypeptide to develop a new biomimetic ECM for stem cell differentiation and investigated whether this recombinant chimeric Fibrillin-Elastin fragment (rcFE) was effective on human nasal inferior turbinate-derived mesenchymal stem cells (hTMSCs). Methods: hTMSCs were grown in the medium supplemented with rcFE, then the effect of the protein was confirmed through cell adhesion assay, proliferation assay, and real-time PCR. Results: rcFE enhanced the adhesion activity of hTMSCs by 2.7-fold at the optimal concentration, and the proliferation activity was 2.6-fold higher than that of the control group (non-treatment rcFE). In addition, when smooth muscle cell differentiation markers were identified by real-time PCR, Calponin increased about 6-fold, α-actin about 9-fold, and MYH11 about 10-fold compared to the control group. Conclusion: Chimeric rcFE enhanced cellular functions such as cell adhesion, proliferation, and smooth muscle differentiation of hTMSCs, suggesting that the rcFE can facilitate the induction of tissue regeneration.
-
-
-
Proteomic Analysis of the Colistin-resistant E. coli Clinical Isolate: Explorations of the Resistome
Authors: Divakar Sharma, Manisha Aswal, Nayeem Ahmad, Manish Kumar and Asad U. KhanBackground: Antimicrobial resistance is a worldwide problem after the emergence of colistin resistance since it was the last option left to treat carbapenemase-resistant bacterial infections. The mcr gene and its variants are one of the causes for colistin resistance. Besides mcr genes, some other intrinsic genes are also involved in colistin resistance but still need to be explored. Objective: The aim of this study was to investigate differential proteins expression of colistin-resistant E. coli clinical isolate and to understand their interactive partners as future drug targets. Methods: In this study, we have employed the whole proteome analysis through LC-MS/MS. The advance proteomics tools were used to find differentially expressed proteins in the colistin-resistant Escherichia coli clinical isolate compared to susceptible isolate. Gene ontology and STRING were used for functional annotation and protein-protein interaction networks, respectively. Results: LC-MS/MS analysis showed overexpression of 47 proteins and underexpression of 74 proteins in colistin-resistant E. coli. These proteins belong to DNA replication, transcription and translational process; defense and stress related proteins; proteins of phosphoenol pyruvate phosphotransferase system (PTS) and sugar metabolism. Functional annotation and protein-protein interaction showed translational and cellular metabolic process, sugar metabolism and metabolite interconversion. Conclusion: We conclude that these protein targets and their pathways might be used to develop novel therapeutics against colistin-resistant infections. These proteins could unveil the mechanism of colistin resistance.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month
