Protein and Peptide Letters - Volume 28, Issue 4, 2021
Volume 28, Issue 4, 2021
-
-
Allergen Homologues, Pathogenesis-Related 1, Polygalacturonase, and Pectin Methyl Esterase from a Japanese Hop
Authors: Seok W. Jang, Kyoung Yong Jeong, Ji Eun Yuk, Jongsun Lee, Kyung Hee Park and Jung-Won ParkBackground: Japanese hop is an important cause of weed pollinosis in East Asia. Its pollen is abundant in autumn. This pollen is known to be the cause of many allergic diseases. However, molecular characteristics of its allergens have not been elucidated. Objective: In this study, we produced recombinant proteins of allergen homologues from Japanese hop by the analysis of expressed sequence tags (EST), and evaluated its allergenicity. Methods: cDNA library was constructed using as little as 50 ng of total RNA from Japanese hop pollen. Allergen homologues were identified by the initial screening of 963 EST clones. Recombinant proteins were overexpressed in the E. coli expression system and purified using Ni-nitrilotriacetic acid-agarose. Purified proteins were analyzed by ELISA. Results and Discussion: Japanese hop pathogenesis-related 1 protein (PR-1) shares 37.0 to 44.4% of amino acid sequence identity with Art v 2, Cuc m 3, and Cyn d 24. Pectin methyl esterase (PME) shows 23.2 to 50.2% of identities to Act d 7, Ole e 11, and Sal k 1. Polygalacturonase (PGs) shows 16.7 to 19.3% of identities to Phl p 13, Cry j 2, Cha o 2, Jun a 2, Pla a 2, and Pla or 2. IgE antibodies from Japanese hop allergy patients’ sera recognized PR-1 (3.4%), PME (13.8%), PGs (3.7%), and profilin (13.8%), respectively. Conclusion: Novel allergenic components were identified, even though low IgE reactivity was displayed reflecting the low degree of cross-reactivity with other pollen allergens. We believe that these molecules have worth further studies.
-
-
-
A Review on Computational Approaches for Analyzing Hydrogen- Deuterium (H/D) Exchange of Proteins
More LessNative state Hydrogen-Deuterium (H/D) exchange method has been used to study the structures and the unfolding pathways for quite a number of proteins. The H/D exchange method is generally monitored using nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) techniques. NMR-assisted H/D exchange methods primarily monitor the residue level fluctuation of proteins, whereas MS-assisted H/D exchange methods analyze multifold ensemble conformations of proteins. In this connection, quite a large number of computational tools and algorithms have been developed for processing and analyzing huge amount of the H/D exchange data generated from these techniques. In this review, most of the freely available computational tools associated with the H/D exchange of proteins have been comprehensively reviewed and scopes to improve/ develop novel computational approaches for analyzing the H/D exchange data of proteins have also been brought into fore.
-
-
-
Transmembrane Protein 166 and its Significance
Authors: Yanwei Yang, Lingxue Zhou, Fushan Xue, Lixin An, Mu Jin and Li LiTransmembrane protein 166 (TMEM166) is a lysosomal/endoplasmic reticulum (ER)-associated protein found in different species where it functions as a regulator of programmed cell death through autophagy and apoptosis. It is expressed in a variety of normal tissues and organs, and it is involved in a wide variety of physiological and pathological processes, including cancers, infection, autoimmune diseases, and neurodegenerative diseases. Previous studies indicated that TMEM166 is associated with autophagosomal membrane development. TMEM166 can cause lysosomal membrane permeabilization (LMP) leading to the release of proteolytic enzymes, e.g., cathepsins, that may cause potential mitochondrial membrane damage, which triggers several autophagic and apoptotic events. A low level of TMEM166 expression is also found in tumors, while high level of TMEM166 is found in brain ischemia. In addition, loss of TMEM166 leads to impaired NSC self-renewal and differentiation along with a decrease in autophagy. These findings offer a comprehensive understanding of the pathways involved in the role of TMEM166 in programmed cell death and treatment of various diseases.
-
-
-
Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B
Authors: Matthew R. Necelis, Luis E. Santiago-Ortiz and Gregory A. CaputoBackground: Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide. Objective: In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity. Methods: Minimal Inhibitory Concentration (MIC) results demonstrated activity against seven strains of bacteria. Membrane and bilayer permeabilization assays were performed to address the role of bilayer disruption in the activity of the peptides. Lipid vesicle binding and quenching experiments were also performed to gain an understanding of how the peptides interacted with lipid bilayers. Results: MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria. Conclusion: There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.
-
-
-
Insights into the Structural Features, Conformational Stability and Functional Activity of the Olneya tesota PF2 Lectin
Background: The O. tesota lectin PF2 is a tetrameric protein with subunits of 33 kDa that recognizes only complex carbohydrates, resistant to proteolytic enzymes and has insecticidal activity against Phaseolus beans pest. Objective: To explore PF2 lectin features at different protein structural levels and to evaluate the effect of temperature and pH on its functionality and conformational stability. Methods: PF2 lectin was purified by affinity chromatography. Its primary structure was resolved by mass spectrometry and analyzed by bioinformatic tools, including its tertiary structure homology modeling. The effect of temperature and pH on its conformational traits and stability was addressed by dynamic light scattering, circular dichroism, and intrinsic fluorescence. The hemagglutinating activity was evaluated using a suspension of peripheral blood erythrocytes. Results: The proposed PF2 folding comprises a high content of beta sheets. At pH 7 and 25°C, the hydrodynamic diameter (Dh) was found to be 12.3 nm which corresponds to the oligomeric native state of PF2 lectin. Dh increased under the other evaluated pH and temperature conditions, suggesting protein aggregation. At basic pH, PF2 exhibited low conformational stability. The native PF2 (pH 7) retained its full hemagglutinating activity up to 45°C and exhibited one transition state with a melting temperature of 76.8°C. Conclusion: PF2 showed distinctive characteristics found in legume lectins. The pH influences the functionality and conformational stability of the protein. PF2 lectin displayed a relatively narrow thermostability to the loss of secondary structure and hemagglutinating activity.
-
-
-
Computational Analysis of Domains Vulnerable to HPV-16 E6 Oncoprotein and Corresponding Hot Spot Residues
Authors: Rabbiah M. Malik, Sahar Fazal and Mohammad Amjad KamalBackground: Human Papilloma Virus (HPV) is the primary cause of cancers in cervix, head and neck regions. Oncoprotein E6 of HPV-16, after infecting human body, alters host protein- protein interaction networks. E6 interacts with several proteins, causing the infection to progress into cervical cancer. The molecular basis for these interactions is the presence of short linear peptide motifs on E6 identical to those on human proteins. Methods: Motifs of LXXLL and E/DLLL/V-G after identification on E6, were analyzed for their dynamic fluctuations by use of elastic network models. Correlation analysis of amino acid residues of E6 was also performed in specific regions of motifs. Results: Arginine, Leucine, Glutamine, Threonine and Glutamic acid have been identified as hot spot residues of E6 which can subsequently provide a platform for drug designing and understanding of pathogenesis of cervical cancer. These amino acids play a significant role in stabilizing interactions with host proteins, ultimately causing infections and cancers. Conclusion: Our study validates the role of linear binding motifs of E6 of HPV in interacting with these proteins as an important event in the propagation of HPV in human cells and its transformation into cervical cancer. The study further predicts the domains of protein kinase and armadillo as part of the regions involved in the interaction of E6AP, Paxillin and TNF R1, with viral E6.
-
-
-
Isolation and Characterization of CD39-like Phosphodiesterase (Cc-PDE) from Cerastes cerastes Venom: Molecular Inhibitory Mechanism of Antiaggregation and Anticoagulation
Authors: Hamida Kiheli, Fatah Chérifi, Meriem Ameziani, Samah Saoud, Ghania Hariti and Fatima Laraba-DjebariBackground: Cerastes cerastes venom contains several bioactive proteins with inhibitory potential of platelet aggregation and blood coagulation. Objective: The current study deals with purification, characterization and determination of structural properties of Cc-PDE, the first phosphodiesterase from Cerastes cerastes venom. Material and Methods: The purification process consists of three successive chromatographies including G75-Sephadex size exclusion, DEAE exchange chromatography and affinity using Sildenafil as a main PDEs’ specific inhibitor. The amino acid sequence of purified Cc-PDE was determined by liquid chromatography coupled off line to MALDI-TOF/TOF. Modeling and structural features were obtained using several bioinformatics tools. In vivo and in vitro antiplatelet aggregation and anticoagulant assays were performed. Results: Cc-PDE (73 506.42 Da) is a 654-residue single polypeptide with 1-22 signal peptide and it is characterized by the presence of predominant basic amino acids suitable to alkaline pI (8.17). Cc-PDE structure is composed of β-strands (17%) and α-helices (24%) and it shares a high identity with homologous snake venom PDEs. Cc-PDE hydrolyzes both Bis-p-nitrophenyl phosphate (Km = 2.60 ± 0.95 mM, Vmax = 0.017 ± 0.002569 μmol.min-1) and p-nitrophenyl phosphate (Km = 7.13 mM ± 0.04490 mM, Vmax = 0.053 ±0.012 μmol.min-1). Cc-PDE prevents ADP- and ATP-induced platelet aggregation by hydrolyzing ADP and ATP, reducing surface P-selectin expression and attenuating platelet function. In addition, Cc-PDE inhibits coagulation factors involved in the intrinsic pathway demonstrated by a significant prolongation of activated partial thromboplastin time and in vivo long-lasting anticoagulation. Conclusion: The obtained results revealed that Cc-PDE may have a therapeutic potential and could be a remedy for thromboembolic diseases as an alternative of anticoagulant and antiplatelet aggregation chemical origins.
-
-
-
Antinociceptive Effects of VV-Hemorphin-5 Peptide Analogues Containing Amino phosphonate Moiety in Mouse Formalin Model of Pain
Authors: Borislav Assenov, Daniela Pechlivanova, Elena Dzhambazova, Petia Peneva and Petar TodorovBackground: Hemorphins are endogenous hemoglobin-derived peptides that belong to the family of “atypical” opioid peptides with both affinities to opioid receptors and ability to release other endogenous opioid peptides. Objective: In the present study, peptide analogues of Valorphin (VV-hemorphin-5) containing amino phosphonate moiety synthesized by solid-phase peptide synthesis (Fmoc-strategy) were investigated for their potential antinociceptive activities and compared to the reference VV-H in formalin- induced model of acute and inflammatory pain in mice. Methods: The hemorphin analogues were prepared by replacement of the one and/or two N-terminal Val in VV-hemorphin5 (VV-H) with ((dimethoxy phosphoryl) methyl)-L-valine and ((dimethoxy phosphoryl) methyl)-L-leucine to obtain the compounds pVV-H, pL-H, and pLV-H. Aiming to additionally prove the importance of amino acid valine, we introduced the ((dimethoxy phosphoryl) methyl)-L-leucine to the N-side of VV-hemorphin-5 (pLVV-H). The experiments were carried out on adult male ICR mice. All peptides were administered intracerebroventricularly at three doses (50, 25 and 12,5 μg/mouse). We have studied the effects of the peptides on acute (1st phase) and inflammatory (2nd phase) pain reaction using un experimental model with intraplantar formalin injection. Results: VV-H showed a significant antinociceptive effect both in the acute and inflammatory phases of the test. Although Valorphin hexa-, hepta-, and octapeptide analogs demonstrated a significant antinociceptive effect, they showed substantial differences considering their effective dose and the phase of the test as compared to the Valorphin. Discussion: Data showed that modified heptapeptides pVV-H and pLV-H exerted the same or better antinociception in acute and inflammatory pain, in comparison to the reference peptide, while pL-H and pLVV-H analogues were less effective. Conclusion: Our study contributes to the elucidation of the role of Valine and the number of amino acid residues in the structure of hemorphin peptide analogs in their effectiveness in suppressing both acute and inflammatory experimental pain.
-
-
-
Biophysical Characterization of Type III Pantothenate Kinase (PanK) from Acinetobacter baumannii
Authors: Ankita Singla, Pradeep Sharma, Akshita Gupta, Naseer Iqbal, Chitra Rani, T.P. Singh and Sujata SharmaBackground: Type-III Pantothenate kinase from the multi drug resistant bacteria, Acinetobacter baumannii (AbPanK) catalyzes the first step of the essential Coenzyme A biosynthesis pathway. AbPanK is an attractive drug target against the bacteria since it is an essential enzyme and its structure is significantly different from the human PanK. Methods: AbPanK was cloned, expressed, purified and crystallized. A good quality single crystal was used for x-ray intensity data collection. Dynamic light scattering was done for calculating the hydrodynamic radii and its oligomeric nature in the solution. Binding studies of this protein with its two substrates, Pantothenate and ATP were done using spectrofluorometer. Results: Our results indicated that AbPanK shows a strong affinity with pantothenate with dissociation constant of 1.2 x 10- 8 M and moderate affinity towards ATP of 3.7x 10-3 M. This fact was further substantiated by the calculations of Km of both substrates using kinase assay kit. Dynamic light scattering studies have shown that it exists as homogenous solution with hydrodynamic radii corresponding to the molecular weight of 29.55 kDa. A low-resolution x-ray intensity data set was collected, which shows that AbPank crystallizes in P2 space group with cell dimensions of a= 165 Å, b= 260 Å, and, c= 197 Å and α= 90.0, β= 113.60, γ= 90.0. Discussion: Recombinant Pantothenate kinase from Acinetobacter baumannii was purified to homogeneity and crystallized. The enzyme exhibits very low sequence identity (28%) to other corresponding enzymes. Conclusion: The recombinant enzyme was active and its binding affinities with its substrates pantothenate and ATP have been studied. This information would be very useful while designing the inhibitors of this enzyme in order to fight bacterial infections associated to this pathogen.
-
-
-
Purification and Characterization of Mannanase from Aspergillus awamori for Fruit Juice Clarification
Authors: Ikram ul Haq, Sheeba Shakoor, Ali Nawaz, Yesra Arshad and Hamid MukhtarBackground: Fruit juice clarification is a challenging aspect of beverage industry which needs to be addressed for economical and hygienic production of fruit juices. Objective: Current study is focused on the complete purification, characterization and thermodynamic analysis of an efficient mannanase enzyme to analyze its applicability in biological clarification fruit juice. Methods: Mannanase production using Aspergillus awamori IIB037 in a 25 L stirred fermenter at pre optimized reaction conditions was carried out. Enzyme purification was carried out via series of steps. Characterization of enzyme along with kinetics and thermodynamic studies was conducted. Purified and characterized enzyme was assessed for its applicability in fruit juice clarification through clarification experiments on fresh apple juice. Results: Purification fold of 3.98 was obtained along with 86.80% purification yield of mannanase with specific activity of 158.16 U/mg. The molecular size of purified enzyme was determined as 66 kDa. The enzyme depicted 56% residual activity at 60°C after 8 hrs. Thermodynamic studies of an enzyme revealed enthalpy of activation (ΔH) and activation energy (Ea) as 30.53KJ/mol, 27.76KJ/mol, respectively. The enzyme activity increased in the presence of ß-mercaptoethanol surprisingly. On the other hand, methyl alcohol, ethanol, Hg2+ and Cu2+ inhibited enzyme activity. The enzyme showed Km and Vmax values of 11.07 mM and 19.08 μM min-1 for Locust Bean Gum (LBG) under optimal conditions. Juice treated with mannanase showed decrease in absorbance and increase in reducing sugar content. Conclusion: The current study demonstrated that mannanase from Aspergillus awamori in its purified form has significant characteristics to be employed industrially for juice clarification.
-
-
-
Recombinant Expression and Characterization of Lemon (Citrus limon) Peroxidase
Authors: Veda P. Pandey, Apoorvi Tyagi, Shagoofa Ali, Kusum Yadav, Anurag Yadav, Ajit K. Shasany and Upendra N. DwivediBackground: Class III plant peroxidases play important role in a number of physiological processes in plants such as lignin biosynthesis, suberization, cell wall biosynthesis, reactive oxygen species metabolism and plant defense against pathogens. Peroxidases are also of significance in several industrial applications. In view of this, the production and identification of novel peroxidases having resistance towards temperature, pH, salts is desirable. Objective: The objective of the present work was to clone and characterize a novel plant peroxidase suitable for industrial application. Methods: A full length cDNA clone of lemon peroxidase was isolated using PCR and RACE approaches, characterized and heterologously expressed in Escherichia coli using standard protocols. The expressed peroxidase was purified using Ni-NTA agarose column and biochemically characterized using standard protocols. The peroxidase was also in-silico characterized at nucleotide as well as protein levels using standard protocols. Results: A full length cDNA clone of lemon peroxidase was isolated and expressed heterologously in E. coli. The expressed recombinant lemon peroxidase (LPRX) was activated by in-vitro refolding and purified. The purified LPRX exhibited pH and temperature optima of pH 7.0 and 50°C, respectively. The LPRX was found to be activated by metal ions (Na+, Ca2+, Mg2+ and Mn2+) at lower concentration. The expressional analysis of the transcripts suggested involvement of lemon peroxidase in plant defense. The lemon peroxidase was in silico modelled and docked with the substrates guaiacol, and pyrogallol and shown the favourability of pyrogallol over guaiacol, which is in agreement with the in-vitro findings. The protein function annotation analyses suggested the involvement of lemon peroxidase in the phenylpropanoid biosynthesis pathway and plant defense mechanisms. Conclusion: Based on the biochemical characterization, the purified peroxidase was found to be resistant towards the salts and thus, might be a good candidate for industrial exploitation. The in-silico protein function annotation and transcript analyses highlighted the possible involvement of the lemon peroxidase in plant defense response.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month
