Protein and Peptide Letters - Volume 27, Issue 11, 2020
Volume 27, Issue 11, 2020
-
-
Putative Antimicrobial Peptides in Fish: Using Zebrafish as a Representative
Authors: Xiyang Chen, Yunhai Yi, Chao Bian, Xinxin You and Qiong ShiAntimicrobial peptides (AMPs) are a group of short peptides in vertebrates, independently or derived from big proteins (AMP precursors), for innate immune adaptation to fight against exogenous pathogens. Therefore, they provide attractive templates for us to develop new alternatives to antibiotics, which will relieve the threats of microbial resistance and drug residual. Fish reside in various environments; however, AMP research in fish have long been lagged behind. These highly diverse peptides in fish, regardless whether they are digested from proteins or not, constitute a sophisticate line for host defense. Exploring AMPs’ detailed composition in fish will benefit us with a better understanding of them in vertebrates. This mini-review presents brief descriptions of AMPs and their research advances in fish, using zebrafish as the representative and comparing this model fish with well-studied amphibious mudskippers and tetraploid Atlantic salmon. Common features and species-specific characteristics among various fish provide valuable genetic resources for high-throughput development of novel antibiotic alternatives. In addition, the diversity and heterogeneity in tissue distribution also revealed the complex synergism of AMPs/AMP precursors. These big datasets of genomes and transcriptomes lay a solid foundation for theoretic researches and practical applications of AMPs in fish aquaculture and drug development.
-
-
-
Matrix Metalloproteinases in Invertebrates
Authors: Xi Liu, Dongwu Liu, Yangyang Shen, Mujie Huang, Lili Gao, Zonghan Zhang, Baohua Liu, Bosheng Zhao and Qiuxiang PangMatrix Metalloproteinases (MMPs) belong to a family of metal-dependent endopeptidases which contain a series of conserved pro-peptide domains and catalytic domains. MMPs have been widely found in plants, animals, and microorganisms. MMPs are involved in regulating numerous physiological processes, pathological processes, and immune responses. In addition, MMPs play a key role in disease occurrence, including tumors, cardiovascular diseases, and other diseases. Compared with invertebrate MMPs, vertebrate MMPs have diverse subtypes and complex functions. Therefore, it is difficult to study the function of MMPs in vertebrates. However, it is relatively easy to study invertebrate MMPs because there are fewer subtypes of MMPs in invertebrates. In the present review, the structure and function of MMPs in invertebrates were summarized, which will provide a theoretical basis for investigating the regulatory mechanism of MMPs in invertebrates.
-
-
-
Ribosome Hibernation as a Stress Response of Bacteria
Authors: Tianwen Wang, Chen Liang, Mengyuan Zheng, Lu Liu, Yafei An, Hongju Xu, Sa Xiao and Lei NieRibosome is primarily regarded as the committing organelle for the translation process. Besides the expansion of its function from a translational machine for protein synthesis to a regulatory platform for protein quality control, the activity regulation and recycling of ribosome have been deepened significantly. Recent advances have confirmed a novel mechanism in the regulation of ribosome activity when a cell encounters adverse conditions. Due to the binding of certain protein factors onto a ribosome, the structural and functional change of the ribosome inside the cell will take place, thereby leading to the formation of inactive ribosomes (70S monomer or 100S dimer), or ribosome hibernation. By ribosome hibernation, the overall protein synthesis rate of a cell could be slowed down. The resistance to adverse conditions or chemicals of the host cell will be enhanced. In this paper, we discussed the phenomenon, molecular mechanism, and physiological effect of ribosome hibernation when cells are under stresses. And then, we discussed the resuscitation of a hibernating ribosome and the role of ribosome hibernation in the treatment of antimicrobial infection.
-
-
-
Development of Cell Penetrating Peptides for Effective Delivery of Recombinant Factors into Target Cells
Authors: Ubashini Vijakumaran, Fazlina Nordin, Zariyantey A. Hamid, Maha Abdullah and Tye Gee JunThe cell membrane is a protective layer that strictly controls the passage of molecules restricting the delivery of biomolecules such as drugs, oligonucleotides, peptides, and siRNA into the cells. This shortcoming has been overcome by the discovery of Cell-Penetrating Peptides (CPPs) that has undergone 30 years of evolution. To date, CPPs are largely modified to improve its efficacy and to suit the different delivery applications. The modes of CPPs penetration are still an unresolved mystery and requires further investigations to increase its effectiveness and to diversify its use. Despite having huge potential as a biomolecule carrier, CPPs also have some drawbacks. In this review, the natural and synthetic CPPs, the modifications that have been conducted on CPPs to improve its efficacy, its extended applications, modes of penetration and limitation as well as challenges will be discussed.
-
-
-
Establishment and In Vitro Evaluation of Porous Ion-Responsive Targeted Drug Delivery System
Authors: Hongfei Liu, Jie Zhu, Pengyue Bao, Yueping Ding, Jiapeng Wang, Yi Du, Yang Qu and Ying XuBackground: Protein drugs have disadvantages, such as short half-lives, unstable biological activities, and low utilization efficiency. Objective: In this paper, a porous ion-responsive targeted drug delivery system was designed, combining biodegradable carriers with ion exchange technology to overcome problems for protein drug delivery systems. Methods: Carboxymethyl Chitosan Porous Microspheres (CCPM) were prepared using an emulsification- chemical crosslinking method. Chitosan-bovine serum albumin-carboxymethyl chitosan porous microspheres (CBCCPM) were prepared using a dynamic ion exchange method and static self-assembly technology. Results: CCPM were round in appearance mostly with a particle size distribution of 5-15 μm, which facilitates passive targeting to the lungs. CCPM had a total ion exchange capacity of 9.97 ± 0.07 mmol/g and showed a strong ability to attract and contain positively charged drugs. A potentiometric titration curve was used to identify the dissociation behavior of exchangeable groups on the microspheres; the optimal pH for ion exchange of microspheres was ≥ 4.3. CCPM had ion responsiveness, in vitro degradation ability, thermal stability and biocompatibility. In vitro release results confirmed that BSA and CCPM were mainly bound together by ionic bonds and the drug release mechanism of the self-assembled microspheres changed from particle diffusion to membrane diffusion under pH 7.4 PBS solution containing 0.02% Tween 80. Circular dichroism and sodium dodecyl-sulfate polyacrylamide gel electrophoresis results showed no significant change in the secondary structure and purity of BSA after binding to CCPM. The cumulative in vitro release rate of microspheres after 24 h was 86.78%. Conclusion: In this paper, CBCCPM, a porous ion-responsive targeted drug delivery system, was designed.
-
-
-
Study on the Mechanism of Selective Interaction of BR3 and BCMA with BAFF and APRIL
Authors: Luoman Li, Yaxin Jiang, LiLi Su, Deming Feng, Jing Wei and Jian SunBackground: B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) can activate signaling pathways by binding to specific receptors. BR3 (BAFF receptor) shows a unique selectivity for BAFF ligand, while B-cell maturation antigen (BCMA) exhibits a stronger interaction between APRIL-BCMA rather than BAFF-BCMA interaction. Objective: The combined domains were fused with IgG1 Fc to better understand which domain affects the selective interaction of the receptor with BAFF and APRIL. Methods: Since BR3 and BCMA both contain cysteine-rich repeat domains (CRD) with DxL motif, the binding domains of BR3 and BCMA were segmented into two parts in this study. BR3-1 (CFDLLVRHGVAC) and BCMA-1 (YFDSLLHACIPC) contained the conservative DxL motif, while BR3-2 (GLLRTPRPKPA) and BCMA-2 (QLRCSSNTPPLT) were adjacent to the CRDs yet still joined with BR3-1 and BCMA-1. Affinity between all possible combinations was then tested. Results: The affinity of BR3-1-BCMA-2-Fc and BR3-1-BR3-2-Fc for BAFF was higher than BCMA-1-BR3-2-Fc and BCMA-1-BCMA-2-Fc. Moreover, BR3-1-BCMA-2-Fc and BCMA-1-BCMA- 2-Fc had affinity for APRIL, while BR3-1-BR3-2-Fc and BCMA-1-BR3-2-Fc hardly interacted with APRIL. Conclusion: BR3-1 region played a key role for interaction with BAFF, while BCMA-1 region exhibited weaker binding with BAFF. BCMA-2 region having an α-helix might contribute towards selectivity of APRIL-BCMA binding and BR3-2 rigid region had deleterious effects on the APRIL-BR3 interaction. These results provide comprehensive insights of the mechanism of selective interactions, and may promote specific antagonist design in the future.
-
-
-
Antimicrobial and Antibiofilm Activity of Lys-[Trp6]hy-a1 Combined with Ciprofloxacin Against Gram-Negative Bacteria
Background: Ciprofloxacin (Cip) is the most commonly used quinolone in clinical practice; however large-scale use has favored the increase of multiresistant pathogenic microorganisms. Antimicrobial peptides (AMPs) appear to be a promising alternative in potentiating these conventional drugs. Objective: The aim of this study was to evaluate the effect of the peptide Lys-[Trp6]hy-a1 (lys-a1) on the antimicrobial and antibiofilm activity of ciprofloxacin against clinically relevant gram-negative bacteria. Methods: The antimicrobial effects of Cip and lys-a1 were assessed by determining the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). The synergistic action of Cip and lys-a1 was determined by checkerboard assay. The time-kill curve was constructed for the Cip/lys-a1 combination against Pseudomonas aeruginosa ATCC 9027. The antibiofilm activity of this combination was analyzed by crystal violet, colony-forming unit count and atomic force microscopy (AFM). Results: The data demonstrated that lys-a1 was able to inhibit planktonic growth of strains of P. aeruginosa and Klebsiella pneumoniae both at 125 μg/mL. The fractional inhibitory concentration index (FICi) showed a synergistic effect between Cip and lys-a1 against P. aeruginosa, decreasing the MICs of the individual antimicrobial agents by 4- and 8-fold, respectively. This effect was also observed for the death kinetics and antibiofilm activity. Analysis of the early biofilms (6 h) as well as isolated cells by AFM images evidenced the cell perturbation caused by Cip/lys-a1 treatment. Conclusion: These data suggest that lys-a1 has biotechnological potential as a therapeutic tool for the treatment of infections caused by clinically relevant microorganisms, especially P. aeruginosa.
-
-
-
Expression and Purification of Tetanus Toxin Fragment C in Escherichia coli BL21(DE3)
Authors: Pengdi Chai, Xiuying Pu, Jianqiang Li, Xiaoyu Xia, Jun Ge, Amiao Luo, Hui Su, Weijie Zhang and Jianzhong MaBackground: Tetanus is an infectious disease caused by Clostridium secreting tetanus toxin in anaerobic environment. The fragment C of Tetanus toxin (TTc) has been widely studied as a candidate vaccine to replace the existing tetanus toxoid vaccine. Objective: In this study, we established a simple method to purify recombinant protein TTc with ion-exchange chromatography from Escherichia coli expression systems. Methods: The TTc gene sequence was cloned into pET26b (+) vector and transferred to E. coli BL21 (DE3) for expression. The fermentation conditions (IPTG concentration, Induction temperature, Induction time) were optimized to obtain more soluble proteins. The soluble proteins were purified by Anion exchange chromatography and Cation exchange chromatography. The sequence of columns in the purification process was discussed. Finally, the stability of purified TTc protein were determined, the secondary structure of the purified TTc protein was determined by circular dichroism. The molecular weight of the purified TTc protein was determined by liquid chromatograph- mass spectrometer. Furthermore, we verified the immunogenicity of the purified protein in mice. Results: The purity of TTc improved from 34% to 88% after the first anion exchange column, and the final yield of recombinant TTc (purity > 95%) can reach 84.79% after the following cation exchange chromatography. The recombinant TTc had a molecular weight of 51.737 KDa, was stable at 4 °C and weak alkaline environment, was a β-sheet secondary structure, and had strong immunogenicity. Conclusion: The purification method we developed might be an efficient method for the industrial production of tetanus recombinant TTc vaccine.
-
-
-
Identification of Novel Cytotoxic T Lymphocyte Epitopes of Drug-Resistance Related Protein InhA from Mycobacterium tuberculosis
Authors: Dezhi Li, Zelong Dou, Yahong Wu, Yuanming Qi, Junhui Chen and Yanfeng GaoBackground: Tuberculosis (TB) caused by Mycobacterium tuberculosis (MTB), especially the drug-resistant MTB, poses serious challenges to human healthcare worldwide. Cytotoxic T lymphocytes (CTLs) play a vital role in immune defense against MTB. Objective: To identify novel CTL epitopes that could induce cellular immunity against MTB infections. Methods: The HLA-A*0201 restricted CTL epitopes of the drug-resistant protein InhA from MTB were predicted by online algorisms and synthesized by the Fmoc solid phase method. The candidate peptides were used to induce CTLs from human peripheral blood mononuclear cells (PBMCs) of HLA-A*0201 healthy donors and the HLA-2.1/Kb mice. IFN-γ productions of CTLs were detected by enzyme linked immunospot assay (ELISPOT), flow cytometry and enzyme-linked immunosorbent assay (ELISA), and cytotoxicity was analyzed by lactate dehydrogenase (LDH) assay. Results: A group of 4 epitopes were screened out with high affinities to HLA-A*0201. ELISPOT and flow cytometry analysis indicated these peptides significantly induced that IFN-γ release of CTLs from the HLA-A*0201+/PPD+ donors, as the mutant analogues had more potent stimulation effects. LDH assay showed that CTLs from PPD+ donors and the immunized mice exhibited significant cytotoxicity and low cross-reactivity. ELISA analysis revealed comparative levels of IFN-γ were released by CTLs isolated from the mice spleen. Conclusion: Our study has identified 4 novel CTL epitopes of InhA that could elicit potent CTL immunity, establishing a foundation for the development of multivalent peptide vaccines against the drug-resistant MTB.
-
-
-
Effective Delivery of Nef-MPER-V3 Fusion Protein Using LDP12 Cell Penetrating Peptide for Development of Preventive/Therapeutic HIV-1 Vaccine
Authors: Sahar Sabaghzadeh, Seyed M. Sadat, Fatemeh Rohollah and Azam BolhassaniBackground: There is no effective and safe preventive/therapeutics vaccine against HIV-1 worldwide. Different viral proteins such as Nef, and two regions of Env including; variable loop of gp120 (V3) and membrane proximal external region of gp41 (MPER) are particularly important for vaccine development in different strategies and they are also the primary targets of cellular and humoral immune responses. On the other side, LDP12 is a new cell-penetrating peptide (CPP) which is capable of therapeutic application and cargoes delivery across the cellular membrane. Objective: In current study, we designed and produced Nef-MPER-V3 fusion protein harboring LDP12 that has the capability of being used in future vaccine studies. Methods: The CPP-protein was expressed in E. coli Rosseta (DE3) strain and purified through Ni-NTA column. Characterization of cellular delivery and toxicity of the recombinant protein were evaluated by western blotting and MTT assay. Results: Our results showed that the CPP-protein was successfully expressed and purified with high yield of 5 mg/L. Furthermore, non-cytotoxic effect was observed and specific band (~ 37 KDa) in western blotting indicated the capability of LDP12 to improve the rate of penetration into HEK-293T cells in comparison with a control sample. Conclusion: Altogether, the data indicated that LDP12 CPP could be utilized to internalize HIV-1 Nef-MPER-V3 protein into eukaryotic cell lines without any toxicity and represented a valuable potential vaccine candidate and this guarantees the further evaluation towards the assessment of its immunogenicity in mice, which is currently under process.
-
-
-
Stem Bromelain Proteolytic Machinery: Study of the Effects of its Components on Fibrin (ogen) and Blood Coagulation
More LessBackground: Antiplatelet, anticoagulant and fibrinolytic activities of stem bromelain (EC 3.4.22.4) are well described, but more studies are still required to clearly define its usefulness as an antithrombotic agent. Besides, although some effects of bromelain are linked to its proteolytic activity, few studies were performed taking into account this relationship. Objective: We aimed at comparing the effects of stem bromelain total extract (ET) and of its major proteolytic compounds on fibrinogen, fibrin, and blood coagulation considering the proteolytic activity. Methods: Proteolytic fractions chromatographically separated from ET (acidic bromelains, basic bromelains, and ananains) and their irreversibly inhibited counterparts were assayed. Effects on fibrinogen were electrophoretically and spectrophotometrically evaluated. Fibrinolytic activity was measured by the fibrin plate assay. The effect on blood coagulation was evaluated by the prothrombin time (PT) and activated partial thromboplastin time (APTT) tests. Effects were compared with those of thrombin and plasmin. Results: Acidic bromelains and ananains showed thrombin-type activity and low fibrinolytic activity, with acidic bromelains being the least effective as anticoagulants and fibrinolytics; while basic bromelains, without thrombin-like activity, were the best anticoagulant and fibrinolytic proteases present in ET. Procoagulant action was detected for ET and its proteolytic compounds by the APTT test at low concentrations. The measured effects were dependent on proteolytic activity. Conclusion: Two sub-populations of cysteine proteases exhibiting different effects on fibrin (ogen) and blood coagulation are present in ET. Using well characterized stem bromelain regarding its proteolytic system is a prerequisite for a better understanding of the mechanisms underlying the bromelain action.
-
-
-
Comparative Proteomics of Commensal and Pathogenic Strains of Escherichia coli
Authors: Neelja Singhal, Divakar Sharma, Manish Kumar, Deepa Bisht and Jugsharan S. VirdiBackground: Most of the proteomic studies in Escherichia coli have focussed on pathogenic strains, while very few studies have studied the commensal strains. It is important to study the commensal strains because under the selective pressure of their habitat, commensal strains might serve as reservoirs of virulent and pathogenic strains. Objective: In this study, we have performed a comparative proteomic analysis of commensal and pathogenic strains of E. coli isolated from a major river flowing through northern India. Methods: Proteins were resolved by two dimensional gel electrophoresis and the differentially expressed proteins were identified using matrix-assisted laser desorption ionization-time of flight mass-spectrometry (MALDI-TOF MS). Results: Many proteins of the commensal strain showed an increased expression compared to the pathogenic strain, of which seventeen proteins were identified by MALDI-TOF MS. Functional classification of these proteins revealed that they belonged to different functional pathways like energy metabolism, nucleotide and nucleoside conversions, translation, biosynthesis of amino acids and motility and energytaxis/chemotaxis. Conclusion: As per the best of our knowledge, this is the first report on comparative proteomic analysis of E. coli commensal and pathogenic strains of aquatic origin. Our results suggest that the increased production of these proteins might play an important role in adaptation of E. coli to a commensal/pathogenic lifestyle. However, further experiments are required to understand the precise role of these proteins in regulating the pathogenicity/commensalism of E. coli.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month
