Protein and Peptide Letters - Volume 25, Issue 2, 2018
Volume 25, Issue 2, 2018
-
-
Enzymes: Plant-based Production and their Applications
Authors: Muhammad S. Khan, Ghulam Mustafa and Faiz Ahmad JoyiaBackground: Enzymes are biocatalysts that play key roles in the production of biomolecules. Transgenic plants can be valuable cost effective resource to produce enzymes with bona fide structure. Further, plants provide inexpensive production platforms for pharmaceuticals and nutraceuticals. Objective: This review article summarizes the properties and importance of enzymes and describes how foreign proteins/enzymes accumulate in plant cells that can be used for commercial purposes. Conclusion: The instances illustrated in this review evidently depict that plant enzymes involved in fundamental cellular activities are of great importance regarding plant growth and development. Investigating these enzymes and the metabolic pathways involved in their synthesis will certainly help to improve plant and human health. Furthermore, enzymes of industrial and pharmaceutical importance can be expressed in genetically modified plants to obtain enhanced expression. Considering easiness of obtaining desired expression, GM plants can offer a good alternate for large scale production of enzymes.
-
-
-
Palm-Based Neopentyl Glycol Diester: A Potential Green Insulating Oil
Authors: Nurliyana A. Raof, Robiah Yunus, Umer Rashid, Norhafiz Azis and Zaini YaakubBackground: The transesterification of high oleic palm oil methyl ester (HOPME) with neopentyl glycol (NPG) has been investigated. The present study revealed the application of low-pressure technology as a new synthesis method to produce NPG diesters. Single variable optimization and response surface methodology (RSM) were implemented to optimize the experimental conditions to achieve the maximum composition (wt%) of NPG diesters. Objective: The main objective of this study was to optimize the production of NPG diesters and to characterize the optimized esters with typical chemical, physical and electrical properties to study its potential as insulating oil. Methods: The transesterification reaction between HOPME and NPG was conducted in a 1L three-neck flask reactor at specified temperature, pressure, molar ratio and catalyst concentration. For the optimization, four factors have been studied and the diester product was characterized by using gas chromatography (GC) analysis. The synthesized esters were then characterized with typical properties of transformer oil such as flash point, pour point, viscosity and breakdown voltage and were compared with mineral insulating oil and commercial NPG dioleate. For formulation, different samples of NPG diesters with different concentration of pour point depressant were prepared and each sample was tested for its pour point measurement. Results: The optimum conditions inferred from the analyses were: molar ratio of HOPME to NPG of 2:1.3, temperature = 182°C, pressure = 0.6 mbar and catalyst concentration of 1.2%. The synthesized NPG diesters showed very important improvement in fire safety compared to mineral oil with flash point of 300°C and 155°C, respectively. NPG diesters also exhibit a relatively good viscosity of 21 cSt. The most striking observation to emerge from the data comparison with NPG diester was the breakdown voltage, which was higher than mineral oil and definitely in conformance to the IEC 61099 limit at 67.5 kV. The formulation of synthesized NPD diesters with VISCOPLEX® pour point depressant has successfully increased the pour point of NPG diester from -14°C to -48°C. Conclusion: The reaction time for the transesterification of HOPME with NPG to produce NPG diester was successfully reduced to 1 hour from the 14 hours required in the earlier synthesis method. The main highlight of this study was the excess reactant which is no longer methyl ester but the alcohol (NPG). The optimum reaction conditions for the synthesis were molar ratio of 2:1.13 for NPG:HOPME, 182°C, 0.6 mbar and catalyst concentration of 1.2 wt%. The maximum NPG diester yield of 87 wt% was consistent with the predicted yield of 87.7 wt% obtained from RSM. The synthesized diester exhibited better insulating properties than the commercial products especially with regards to the breakdown voltage, flash point and moisture content.
-
-
-
Thermodynamics and Kinetics Parameters of Eichhornia crassipes Biomass for Bioenergy
Background: Eichhornia crassipes is an aquatic plant well known for its role in soil reclamation due to the containment of valuable nutrients. Moreover, its biomass is an abundant and low-cost biological resource. Pyrolysis of a biomass offers one of the cleanest methods to harness the bioenergy stored in the biomass. Objective: The present study was focused on evaluating the bioenergy potential of Eichhornia crassipes via pyrolysis. Methods: Biomass of E. crassipes was collected from a municipal wastewater pond. Oven dried powdered biomass of E. crassipes was subjected to pyrolysis at three heating rates including 10, 30 and 50 °C min-1 in a simultaneous Thermogravimetry–Differential Scanning Calorimetry analyzer under an inert environment containing nitrogen. Data obtained were subjected to isoconversional models of Kissenger-Akahira-Sunose (KSA) and Flynn–Wall–Ozawa (FWO) to understand the reaction chemistry. Results: Kinetic parameters have shown that the pyrolysis followed first-order reaction kinetics. The average values of activation energies (129.71-133.03 kJ mol-1) and thermodynamic parameters including high heating values (18.12 MJ kg-1), Gibb's free energies (171-180 kJ mol-1) and enthalpy of reaction (124-127 kJ mol-1) have shown the remarkable bioenergy potential of this biomass. Conclusion: This low-cost biomass may be used to produce liquids, gases, and biochar in a costefficient and environmentally friendly way via pyrolysis or co-pyrolysis in the future.
-
-
-
Evaluating the Potential of Oleaginous Yeasts as Feedstock for Biodiesel Production
Background: Lipid-producing microorganisms, said to be oleaginous have been recognized since several years. We had investigated the effects of medium components and culturing situations on cell growth and lipid accumulation of oleaginous yeasts which were analytically examined so as to enhance lipid yield for biodiesel production. Objective: The main objective of this study was to explore oleaginous yeast, Yarrowia lipolytica isolated from soil and optimization of culture conditions and medium components to obtained better quality microbial oil for biodiesel production. Methods: Fifty yeast strains were isolated from soil from different regions of Lahore and eleven of them were selected for oil production. The isolated yeast colonies were screened to further check their lipid producing capabilities by the qualitative analysis. Five yeast strains were designated as oleaginous because they produced more than 16% of oil based on their biomass. To estimate the total lipid content of yeast cells, the extraction of lipids was done by performing the procedure proposed by Bligh and Dyer. The transesterification of yeast oils was performed by using different methods. There were three different strategies customized to transesterifying microbial oil using base catalyzed transesterification, acid catalyzed transesterification and enzyme-based transesterification. After completion of transesterification, sample was used for fatty acid methyl esters (FAMEs) were analyzed by gas-chromatograph with ionization detector type MS. Results: The isolate IIB-10 identified as Yarrowia lipolytica produced maximum amount of lipids i.e. 22.8%. More amount of biomass was obtained when cane molasses was utilized as carbon source where it produced 29.4 g/L of biomass while sucrose and lactose were not utilized by IIB-10 and no biomass was obtained. Similarly, meat extracts showed best results when it was used as nitrogen source because it resulted in 35.8 g/L biomass of Yarrowia lipolytica IIB-10. The culturing conditions like size of inoculum, effect of pH and time of incubation were also studied. The 10% of inoculum size produced 25.4 g/L biomass at 120 h incubation time, while the pH 7 was the optimum pH at which 24.8 g/L biomass was produced by Yarrowia lipolytica IIB-10. GC-MS analysis showed that biodiesel produced by transesterification contained similar fatty acids as found in vegetable oil for this reason it is widely accepted feedstock for biodiesel production. Conclusion: The analysis of fatty acids methyl esters showed the similar composition of microbial oil as in vegetable oils and high amount of methyl esters were obtained after transesterification. Therefore, potentially oleaginous yeast could be used to generate a large amount of lipids for biodiesel production that will be the better substitute of petroleum-based diesel and will also control the environmental pollution.
-
-
-
Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis
Background: Cellulose represents a major source of fermentable sugars in lignocellulosic biomass and a combined action of hydrolytic enzymes (exoglucanases , endoglucanases and β-glucosidases) is required to effectively convert cellulose to glucose that can be fermented to bio-ethanol. However, in-order to make the production of bio-ethanol an economically feasible process, the costs of the enzymes to be used for hydrolysis of the raw material need to be reduced and an increase in specific activity or production efficiency of cellulases is required. Among the cellulases, β-glucosidase not only hydrolyzes cellobiose to glucose but it also reduces the cellobiose inhibition, resulting in efficient functioning of endo- and exo-glucanases. Therefore, in the current study kinetic and thermodynamic characteristics of highly active β-glucosidase from randomly mutated Aspergillus niger NIBGE-06 have been evaluated for its industrial applications. Objective: The main objective of this study was the identification of mutations and determination of their effect on the physiochemical, kinetic and thermodynamic characteristics of β-glucosidase activity and stability. Methods: Pure cultures of Aspergillus niger NIBGE and its 2-Deoxy-D-glucose resistant γ-rays mutant Aspergillus niger NIBGE-06 were grown on Vogel's medium containing wheat bran (3% w/v), at 30±1 °C for 96-108 h. Crude enzymes from both strains were subjected to ammonium sulfate precipitation and column chromatography on Fast Protein Liquid Chromatography (FPLC) system. The purified β-glucosidases from both fungal sources were characterized for their native and subunit molecular mass through FPLC and SDS-PAGE, respectively. The purified enzymes were then comparatively characterized for their optimum temperature, activation energy (Ea), temperature quotient (Q10), Optimum pH, Heat of ionization (ΔHI) of active site residues , Michaelis-Menten constants (Vmax, Km, kcat and kcat/Km) and thermodynamics of irreversible inactivation through various enzyme assays. The genomic DNA from both fungal strains was also extracted by SDS-method and full length β- glucosidase genes (bgl) were amplified through PCR. The PCR products were cloned in TA cloning vector followed by the sequencing of potentially full length clones using the commercial services of Macrogen, Korea. The in silico analyses of the sequences thus obtained were also performed using various online tools such as blastn, blastp, GeneWise, SignalP, Inter- ProScan. Results: The extracellular β-glucosidases (BGL) from both fungal sources were purified to homogeneity level by ammonium sulfate precipitation and FPLC system. The BGLs from both strains were dimeric in nature, with subunit and native molecular masses of 130 kDa and 252 kDa, respectively. The comparative analysis of nucleotides of bgl genes revealed 8 point mutations. Significant improvement was observed in the kinetic properties of the mutant BGL relative to the wild type enzyme. Arrhenius plot for energy of activation (Ea) showed a biphasic trend and ES-complex formation required Ea of 50 and 42 kJ mol-1 by BGL from parent and mutant, respectively. The pKa1 and pKa2 of the active site residues were 3.4 & 5.5 and 3.2 & 5.6, respectively. The heat of ionization for the acidic limb (ΔHI-AL) and the basic limb (ΔHI-BL) of BGL from both strains were equal to 56 & 41 and 71 & 45 kJ mol-1, respectively. Kinetic constants of cellobiose hydrolysis for BGL from both strains were determined as follows: kcat = 2,589 and 4,135 s-1, Km = 0.24 and 0.26 mM cellobiose, kcat/Km = 10,872 and 15,712 s-1 mM-1 cellobiose, respectively. Thermodynamic parameters for cellobiose hydrolysis also suggested that mutant BGL is more efficient compared to the parent enzyme. Comparative analysis of Ea(d), ΔH* and ΔG* for irreversible thermostability indicated that the thermostabilization of mutant enzyme was due to higher functional energy (free energy), which enabled the enzyme to resist against unfolding of its transition state. Conclusion: Physiochemical and thermodynamic characterization of extracellular β-glucosidases (BGL) from 2-Deoxy-Dglucose resistant mutant derivative of A. niger showed that mutagenesis did not greatly affect the physiochemical properties of the BGL enzyme, like temperature optima, pH optima and molecular mass, while the catalytic efficiency for cellobiose hydrolysis was significantly improved (High kcat and kcat/Km). Furthermore, the mutant BGL was more thermostable than the parent enzyme. This shows that random mutagenesis has changed the BGL structural gene, resulting in improvement within its stability- function characteristics. Hence, directed evolution or random mutagenesis with careful selection can result in the engineering of highly efficient enzymes for intended industrial applications.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month
