Protein and Peptide Letters - Volume 19, Issue 3, 2012
Volume 19, Issue 3, 2012
-
-
Mass Spectrometric Characterization of the Sarcoplasmic Reticulum from Rabbit Skeletal Muscle by On-membrane Digestion
Authors: Lisa Staunton and Kay OhlendieckThe sarcoplasmic reticulum from skeletal muscle constitutes an elaborate membrane system that contains a considerable number of integral and very large proteins that exist in highly complex supramolecular clusters. Conventional proteomics using two-dimensional gel electrophoresis greatly underestimates the presence of these proteins. Here, we have applied one-dimensional gradient gels and on-membrane digestion to overcome this technical problem. Mass spectrometric analysis has determined the presence of 31 distinct protein species in the sarcoplasmic reticulum, including key Ca2+-handling proteins such as the ryanodine receptor, Ca2+-ATPase, calsequestrin and sarcalumenin. Immunoblotting confirmed the relative position of these Ca2+-regulatory elements in analytical gel replicas. Interestingly, aldolase and phosphofructokinase were found to be present in the purified sarcoplasmic reticulum, supporting the idea of a close physical coupling between the glycolytic pathway and the energy-dependent sarcoplasmic reticulum. Hence, on-membrane digestion is highly suitable as the method of choice for studying integral and high-molecular-mass proteins in proteomic studies.
-
-
-
N-terminal Purification Tag Alters Thermal Stability of the Carboxylesterase EstGtA2 from G. thermodenitrificans by Impairing Reversibility of Thermal Unfolding
Authors: David M. Charbonneau, Fatma Meddeb-Mouelhi and Marc BeauregardThe novel thermostable carboxylesterase EstGtA2 from G. thermodenitrificans (accession no. AEN92268) was functionally expressed and purified using an N-terminal fusion tag peptide. We recently reported general properties of the recombinant enzyme. Here we report preliminary data on thermal stability of EstGtA2 and of its tagged form. Conformational stability was investigated using circular dichroism and correlated with residual activity measurements using a colorimetric assay. The tag peptide had no considerable impact on the apparent melting temperature: Tm value = 64.8°C (tagged) and 65.7°C (cleaved) at pH 8. After thermal unfolding, the tag-free enzyme rapidly recovered initial activity at 25°C (1.2 Umg-1), which was corroborated by substantial refolding (83%) as determined by far-UV CD transitions. However, after thermal unfolding, the purification tag drastically decreased specific activity at 25°C (0.07 Umg-1). This was corroborated by the absence of refolding transition. Although the purification tag has no undesirable impact on activity before thermal unfolding as well as on Tm, it drastically hinders EstGtA2 refolding resulting in a major loss of thermal stability.
-
-
-
Extracellular Sunflower Proteins: Evidence on Non-classical Secretion of a Jacalin-Related Lectin
Extracellular proteins from sunflower seedlings were analyzed by electrophoresis followed by peptide mass fingerprinting. Tentative identification revealed novel proteins for this crop. A significant number of those proteins were not expected to be extracellular because they lacked the typical signal peptide responsible for secretion. In silico analysis showed that some members of this group presented the characteristic disordered structures of certain non-classical and leaderless mammalian secretory proteins. Among these proteins, a putative jacalin-related lectin (Helja) with a mannose binding domain was further isolated from extracellular fluids by mannose-affinity chromatography, thus validating its identification. Besides, immunolocalization assays confirmed its extracellular location. These results showed that a lectin, not predicted to be secreted in strict requirement of the N-terminal signal peptide, occurs in a sunflower extracellular compartment. The implications of this finding are discussed.
-
-
-
Identification of Heterotrimeric G Protein α and β Subunits in Rice
Authors: Yuki Abe, Keiko Matsusita, Setsuko Komatsu and Yukimoto IwasakiLike those in mammals, heterotrimeric G protein complexes have been implicated in signal transduction pathways in plants; however, the subunits themselves have not been isolated. In this study, the rice heterotrimeric G protein subunits α (Gα) and β (Gβ) were purified by affinity chromatography using anti-Gα and -Gβ antibodies and SDS-PAGE. Six and seven peptides, respectively, were identified by mass spectrometry and identified as the translation products of the Gα gene RGA1 and Gβ gene RGB1. During purification, the subunits dissociated easily from the G protein complex.
-
-
-
Functional Investigation of Conserved Membrane-Embedded Glutamate Residues in the Proton-Coupled Peptide Transporter YjdL
Authors: Johanne M. Jensen, Heidi A. Ernst, Xiaole Wang, Helle Hald, Amarah C. Ditta, Fouzia Ismat, Moazur Rahman and Osman MirzaProton-dependent oligopeptide transporters (POTs) are secondary active symporters that utilize the proton gradient to drive the inward translocation of di- and tripeptides. We have mutated two highly conserved membraneembedded glutamate residues (Glu20 and Glu388) in the E. coli POT YjdL to probe their possible functional roles, in particular if they were involved/implicated in recognition of the substrate N-terminus. The mutants (Glu20Asp, Glu20Gln, Glu388Asp, and Glu388Gln) were tested for substrate uptake, which indicated that both the negative charge and the side chain length were important for function. The IC50 values of dipeptides with lack of or varying N-terminus (Ac-Lys, Gly- Lys, β-Ala-Lys, and 4-GABA-Lys), showed that Gly-Lys and β-Ala-Lys ranged between ˜0.1 to ˜1.0 mM for wild type and Glu20 mutants. However, for Glu388Gln the IC50 increased to ˜2.0 and >10 mM for Gly-Lys and β-Ala-Lys, respectively, suggesting that Glu388, and not Glu20, is able to sense the position of the N-terminus and important for the interaction. Furthermore, uptake as a function of pH showed that the optimum at around pH 6.5 for wild type YjdL shifted to 7.0-7.5 for the Glu388Asp/Gln mutants while the Glu20Asp retained the wild type optimum. Uptake by the Glu20Gln on the other hand was completely unaffected by the bulk pH in the range tested, which indicated a possible role of Glu20 in proton translocation.
-
-
-
Expression, Purification and Development of Neutralizing Antibodies from Synthetic BoNT/B LC and Its Application in Detection of Botulinum Toxin Serotype B
Authors: S. Ponmariappan, Swati Jain, Richa Sijoria, Arvind Tomar and Om KumarBotulism is a neuroparalytic disease caused by Clostridium botulinum, which produces seven (A-G) neurotoxins (BoNTs). The mouse bioassay is the gold standard for the detection of botulinum neurotoxins, however it requires at least 3-4 days for completion. Most of the studies were carried out in botulinum toxin A and less on type B. Attempts have been made to develop an ELISA based detection system, which is potentially an easier and more rapid method of botulinum neurotoxin detection. In the present study, the synthetic BoNT/B LC gene was constructed using PCR overlapping primers, cloned in a pET28a+ vector and expressed in E. coli BL21DE3. The maximum yield of recombinant proteins was optimized after 16 hrs of post induction at 21°C and purified the recombinant protein in soluble form. Antibodies were raised in Mice and Rabbit. The IgG antibody titer in the case of Mice was 1: 1,024,000 and Rabbit was 1: 512,000 with alum as adjuvant via intramascular route. The biological activity of the recombinant protein was confirmed by in-vitro studies using PC12 cells by the synaptobrevin cleavage, the rBoNT/B LC protein showed the maximum blockage of acetylcholine release at a concentration of 150nM rBoNT/B LC in comparison to the control cells. When the cells were incubated with rBoNT/B LC neutralized by the antisera raised against it, the acetylcholine release was equivalent to the control. IgG specific to rBoNT/B LC was purified from raised antibodies. The results showed that the developed antibody against rBoNT/B LC protein were able to detect botulinum toxin type B approximately up to 1 ng/ml. These developed high titer antibodies may prove useful for the detection of botulinum neurotoxins in food and clinical samples.
-
-
-
Recombinant Expression of Goat Milk Serum Amyloid A: Preliminary Studies of the Protein and Derived Peptides on Macrophage Phagocytosis
Authors: Anna Domenech, John Graham Raynes, Eduardo M. Rodriguez, Anna Aris, Alex Bach and Alicia SerranoSerum Amyloid A3 (SAA3) protein is a member of a complex group of acute phase and constitutive proteins which have been related to several immune functions. Bovine milk SAA3 (M-SAA3) has been described to have a unique N-terminal TFLK motif responsible for up regulating mucin expression in the intestine lumen and therefore a protective gastrointestinal role. cDNA sequences encoding the protein goat M-SAA3 were successfully cloned from milk, mammary gland tissue and liver, expressed despite observed toxicity and purified as a soluble protein. Sequence analyses of the milk and liver derived forms revealed a non mammary-restricted common N-terminal TFLR motif, unlike that described for bovine M-SAA3. Serum derived forms of SAA have been described to opsonize Gram-negative bacteria facilitating their phagocytosis by circulating macrophages or intestinal epithelial cells. However, no reports about a possible opsonic mechanism of the SAA3 isoforms have been described. Recombinant protein but not peptides encompassing the TFLR region increased blood and milk macrophage interaction and uptake of bacteria reported as number of bacteria per 100 macrophages and percentage of macrophages containing one or more bacteria. gMSAA3-derived peptides did not show any effect on phagocytosis. This would indicate that the TFLK-like region responsible for the up-regulation of mucins in the intestine is not the functional part of g-MSAA3 in promoting macrophage phagocytosis.
-
-
-
CuI-Promoted One-Pot Synthesis of N-Boc Protected β-Ketotriazole Amino Acids: Application in the Synthesis of New Class of Dipeptidomimetics
Authors: T. M. Vishwanatha, N. Narendra and Vommina V. SureshbabuOne-pot click chemistry of Nα-Boc-bromomethylketones, NaN3 and propiolic acid affords N-Boc protected 1,4- disubstituted 1,2,3-β-ketotriazole acids in good to excellent yield. The use of CuI as catalyst and DMSO as solvent leads the click reaction to efficient, practical and column-free preparation of the title compounds. The utility of the resulting unnatural amino acids as building blocks to prepare triazole possessing peptidomimetics is also delineated.
-
-
-
Expression and Characterization of a Variant of TACI (CRD2-shortTACIFc) in Pichia pastoris
Authors: Rui Wang, Shiliang Zhou, Xiaomin Peng, Xin-Wen Zhou, Zhi-Qun Xie, Yuxiong Wang, Wei Mo and Min YuTACI is a member of the tumor necrosis factor receptor superfamily and serves as a key regulator of B cell function. The extracellular domain of a typical TNFR contains multiple copies of CRD, which bind in the monomermonomer interfaces of a trimeric ligand. TACI binds to two ligands, APRIL and BAFF, with high affinity and contains two CRD in its extracellular regions, while BCMA and BR3, contain a single or partial CRD for binding the two ligands. However, TACI can be classified as a single CRD receptor because the amino-terminal CRD1 doesn't contribute to ligand binding. To obtain a new variant of TACI possessing higher affinities for binding, we fused a repeat sequence of CRD2 to the N-terminus of the short form of TACI. The new APRIL antagonist peptide, CRD2-shortTACI-Fc, was designed based on the modeling 3-D complex structure of TACI and APRIL. As expected, the purified recombinant CRD2-shortTACI-Fc fusion protein could bind to APRIL in vitro and demonstrated dose-dependent inhibition of APRIL-induced proliferative activity in Raji cells. We found that CRD2-shortTACI-Fc, has a higher affinity for binding to ligands than short-TACI-Fc, which contains a single CRD2.
-
-
-
Effects of Salt and Ligand Concentrations on the Thermal Unfolding and Refolding of Halophilic Starch-Binding Domain from Kocuria varians α-Amylase
Authors: Rui Yamaguchi, Tsutomu Arakawa, Hiroko Tokunaga, Matsujiro Ishibashi and Masao TokunagaThe starch binding domain of α-amlylase from moderate halophile was expressed in E. coli with His tag (His- SBD12) and characterized for its halophilic properties. His-SBD12 was stable up to 35°C and showed binding activity, although at reduced level, to amylose even in the absence of NaCl. Both NaCl and specific ligands exhibited insignificant influence on the secondary structure of His-SBD12, but showed significant stabilization effects against thermal unfolding concentration-dependently, showing its halophilic properties. NaCl increased thermal stability of His-SBD12 by 4°C at 0.2 M and 15°C at 2 M, and enhanced refolding rate by ˜7-fold at 0.2 M and ˜170-fold at 2 M. Its specific ligands, β- cyclodextrin (at 3 mM) and maltose (at 470 mM), also stabilized the protein by 11° C, most likely reflecting affinity difference between these two ligands. However, they showed marginal effects on refolding rate. These observations suggest that although binding of NaCl and specific ligands to the native structure can explain their stabilization effects on His- SBD12, it is not a sole factor for modulating their effects on folding of His-SBD12.
-
-
-
Properties of a Putative Cambialistic Superoxide Dismutase from the Aerotolerant Bacterium Streptococcus thermophilus Strain LMG 18311
The aerotolerance of the lactic-fermentative bacterium Streptococcus thermophilus is mainly based on the key antioxidant function of superoxide dismutase (StSOD). In this work, the comparison of recombinant StSOD (rStSOD) forms obtained from two different initiation triplets indicated that the enzyme from S. thermophilus strain LMG 18311 spans 201 residues. rStSOD is organised as a homodimer, even though protein aggregates are formed in concentrated solutions. The capability of binding and exchanging Fe or Mn in the active site classifies rStSOD as a putative cambialistic enzyme; the moderate preference for iron is counteracted by a 1.5-fold higher activity measured for the Mn-containing form. The enzyme is thermostable, being its half-inactivation time 10 min at 73.5°C; the energetic parameters of the heat inactivation process are regulated by the level of Mn cofactor. The effect of Mn content on the rStSOD sensitivity towards inhibitors and inactivators was also evaluated. Sodium azide acts as a weak inhibitor of rStSOD and its Mn content does not greatly affect this sensitivity. Concerning the physiological inactivator hydrogen peroxide, the Mn-enriched rStSOD displays a great resistance; a moderate sensitivity is instead observed in the presence of a low Mn content. Contrary to hydrogen peroxide, sodium peroxynitrite is a powerful inactivator, a behaviour enhanced in the Mn-enriched enzyme. All these results were compared with the corresponding data previously reported for the cambialistic SOD from the taxonomically related S. mutans. In S. thermophilus the regulation of the enzyme functions by the Mn content appears less relevant with respect to S. mutans.
-
-
-
Sequence Preference of α-Helix N-Terminal Tetrapeptide
Authors: Yifei Qi, Huanhuan Liang, Xinping Han and Luhua LaiThe α-helix is the most abundant secondary structure in proteins. Due to the specific i, i+4 hydrogen bond pattern, the two termini have unsatisfied hydrogen bonds, and are less constrained; in order to compensate for this, specific residues are preferred for the terminal positions. However, a naive combination of the statistically-preferred residues for each position may not result in a stable N-terminal helical sequence. In order to provide a set of preferable N-terminal peptides for α-helix design, we have studied the N-terminal tetrapeptide sequence motifs that are favorable for helix formation using statistical analysis and atomistic simulations. A set of tetrapeptide sequences including TEEE and TPEE were found to be favorable motifs. In addition to forming more hydrogen bonds in the helical conformation, the favorable motifs also tended to form more capping boxes. To empirically test our predictions, we obtained 10 peptides with different N-terminal motifs and measured their α-helical content by circular dichroism spectroscopy. The experimental results agreed qualitatively with the statistical and simulation results. Furthermore, some of the suggested preferable tetrapeptide sequences have been successfully applied in de novo protein design.
-
-
-
The Chaperone-like Activity of Rat HspB8/Hsp22 and Dynamic Molecular Transition Related to Oligomeric Architectures In Vitro
Authors: Zehong Yang, Yongzhi Lu, Jingping Liu, Yao Wang and Xiaojun ZhaoHspB8/Hsp22 is a functionally distinct small heat shock proteins (sHsp) and is preferentially expressed in brain, heart, skeletal, and smooth muscle. HspB8 is also associated with neuromuscular function and protein quality control by proteasomes in cardiac hypertrophy. However, the molecular properties in vitro and molecular oligomerization remain uncertain. In this investigation, the rat HspB8 gene was expressed in E.coli cells, and mature HspB8 protein was efficiently prepared. The chaperone-like activity of HspB8 in vitro was quantitatively analyzed by model substrates. Size exclusion chromatography revealed that HspB8 had polydisperse oligomers and underwent dynamic molecular transition in solution, existing in a dynamic equilibrium between various oligomers. In a nonphysiological solution, HspB8 was predominantly octamers. In a physiological solution (pH 7.4), HspB8 mainly formed tetramers. The dynamic interactive transition maybe was helpful to maintain its molecular complxes in solution. In a FRET assay, subunit exchange occurred frequently between the various oligomers with a rate of 0.12, 0.089, and 0.064 min-1 at 50°C, 43°C, and 37°C, respectively. It also demonstrated the dynamic molecular properties of HspB8 in solution.
-
-
-
Purification, Characterizations of a Snake Guard Seeds Lectin with Antitumor Activity Against Ehrlich Ascites Carcinoma Cells In Vivo in Mice
Authors: Syed Rashel Kabir, Md. Farhadul Islam, Md. Jahangir Alom, Md. Abu Zubair and Nurul AbsarA lectin was purified (designated as TCSL) from the Snake guard seeds with molecular mass of 56±2 kDa containing two subunits (34±1 and 22±1 kDa.). TCSL exhibited high agglutination activity at the temperature range 30 to 70°C and did not lose its activity between pH 3.0 to 12.0. The lectin was stable in the presence of denaturants and agglutinated mouse, goat, cow, chicken and human erythrocytes. TCSL did not show antifungal activity whereas it agglutinated six pathogenic bacteria and showed less toxicity against brine shrimp nauplii with the LC50 of 261±29 μg/ml. TCSL showed 28% and 72% inhibition against Ehrlich ascites carcinoma (EAC) cells in vivo in mice when administered 1 mg/kg/day and 2 mg/kg/day (i.p.) respectively for five days. TCSL enhanced the number of macrophages remarkably in the normal mice. The lectin reduced the tumor burden to 62% of EAC cells and significantly increased the hemoglobin and RBC. Treating the EAC bearing mice with TCSL at 2 mg/Kg/day for ten days with a monitoring of 20 days decreased the total WBC towards the normal level and it increased the life span by 39%.
-
-
-
Thermal Unfolding of Nucleoside Hydrolases from the Hyperthermophilic Archaeon Sulfolobus solfataricus: Role of Disulfide Bonds
Nucleoside hydrolases are metalloproteins that hydrolyze the N-glycosidic bond of β-ribonucleosides, forming the free purine/pyrimidine base and ribose. We report the stability of the two hyperthermophilic enzymes Sulfolobus solfataricus pyrimidine-specific nucleoside hydrolase (SsCU-NH) and Sulfolobus solfataricus purine-specific inosineadenosine- guanosine nucleoside hydrolase (SsIAG-NH) against the denaturing action of temperature and guanidine hydrochloride by means of circular dichroism and fluorescence spectroscopy. The guanidine hydrochloride-induced unfolding is reversible for both enzymes as demonstrated by the analysis of the refolding process by activity assays and fluorescence measurements. The evidence that the denaturation of SsIAG-NH carried out in the presence of reducing agents proved to be reversible indicates that the presence of disulfide bonds interferes with the refolding process of this enzyme. Both enzymes are highly thermostable and no thermal unfolding transition can be obtained up to 108°C. SsIAG-NH is thermally denatured under reducing conditions (Tm=93°C) demonstrating the contribution of disulfide bridges to enzyme thermostability.
-
Volumes & issues
-
Volume 32 (2025)
-
Volume 31 (2024)
-
Volume 30 (2023)
-
Volume 29 (2022)
-
Volume 28 (2021)
-
Volume 27 (2020)
-
Volume 26 (2019)
-
Volume 25 (2018)
-
Volume 24 (2017)
-
Volume 23 (2016)
-
Volume 22 (2015)
-
Volume 21 (2014)
-
Volume 20 (2013)
-
Volume 19 (2012)
-
Volume 18 (2011)
-
Volume 17 (2010)
-
Volume 16 (2009)
-
Volume 15 (2008)
-
Volume 14 (2007)
-
Volume 13 (2006)
-
Volume 12 (2005)
-
Volume 11 (2004)
-
Volume 10 (2003)
-
Volume 9 (2002)
-
Volume 8 (2001)
Most Read This Month
