Skip to content
2000
Volume 18, Issue 5
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

The distinct biochemical function of endoplasmic reticulum (ER) protein Calreticulin (CR) catalyzing the transfer of acyl group from acyloxycoumarin to a receptor protein was termed calreticulin transacylase (CRTAase). The present study, unlike the previous reports of others utilizing CR-deficient cells alone, dealt with the recombinant CR domains of Heamonchus contortus (rhCRTAase) in order to examine their CRTAase activity. P-domain of rhCR unlike N- and C-domains was found to be endowed with CRTAase function. We have also observed for the first time acetyl CoA, as a substrate for rhCRTAase/P-domain mediated acetylation of recombinant Schistosoma japonicum glutathione Stransferase (rGST). rhCRTAase/P-domain were also found to undergo autoacylation by acyloxycoumarins. Also, the isolated autoacylated rhCRTAase/P-domain in non-denatured form alone exhibited the ability to transfer acyl group to rGST indicating the stable intermediate nature of acylated CR. P-domain catalyzed acetylation of rGST by 7,8-Diacetoxy-4- methylcoumarin or acetyl CoA resulted in the modification of several lysine residues in common was evidenced by LCMS/ MS analysis. The putative site of the binding of acyloxycoumarins with CR was predicted by computational blind docking studies. The results showed the involvement of two lysine residues Lys-173 and Lys-174 present in P-domain for binding acyloxycoumarins and acetyl CoA thus highlighting that the active site for the CRTAase activity would reside in the P-domain of CR. Certain ER proteins are known to undergo acetylation under the physiological conditions involving acetyl CoA. These results demonstrating CRTAase mediated protein acetylation by acetyl CoA may hint at CR as the possible protein acetyltransferase of the ER lumen.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/092986611794927938
2011-05-01
2025-09-02
Loading full text...

Full text loading...

/content/journals/ppl/10.2174/092986611794927938
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test