Skip to content
2000
image of Nickel Binding to the c-Src SH3 Domain Facilitates Crystallization

Abstract

Introduction

Numerous X-ray crystal structures of the c-Src SH3 domain have provided a large sampling of atomic-level information for this important signaling domain. Multiple crystal forms have been reported, with variable crystal lattice contacts and chemical crystallization conditions.

Materials and Methods

We crystallized the c-Src SH3 domain in a crystallization buffer containing NiCl.

Results

A unique crystal structure of the Src SH3 domain in the trigonal space group 3 is determined to 1.45 Å resolution. Crystal packing and anomalous scattering reveal that this crystal form is mediated by two ordered nickel ions provided by the crystallization buffer. Nickel coordination occurs in a 2:2 stoichiometry, which dimerizes two SH3 domain monomers across a pseudo-twofold rotation axis and involves the native N-terminal c-Src SH3 amino acid sequence, a surface-exposed histidine residue, and ordered water molecules.

Discussion

This study provides an example of metal-mediated crystallization and metal binding by N-terminal protein residues, contrasting with the Amino-Terminal Copper and Nickel Binding (ATCUN) motif.

Conclusion

Alternative avenues help widen the potential for future crystallography-based studies of the c-Src SH3 domain.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665417324250929120040
2025-10-08
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/ppl/10.2174/0109298665417324250929120040/BMS-PPL-2025-104.html?itemId=/content/journals/ppl/10.2174/0109298665417324250929120040&mimeType=html&fmt=ahah

References

  1. Vogel C. Bashton M. Kerrison N.D. Chothia C. Teichmann S.A. Structure, function and evolution of multidomain proteins. Curr. Opin. Struct. Biol. 2004 14 2 208 216 10.1016/j.sbi.2004.03.011 15093836
    [Google Scholar]
  2. Kaneko T. Li L. Li S.S. The SH3 domain- a family of versatile peptide- and protein-recognition module. Front. Biosci. 2008 13 4938 4952 10.2741/3053 18508559
    [Google Scholar]
  3. Mayer B.J. Hamaguchi M. Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C. Nature 1988 332 6161 272 275 10.1038/332272a0 2450282
    [Google Scholar]
  4. Mehrabipour M. Jasemi N.S.K. Dvorsky R. Ahmadian M.R. A systematic compilation of human SH3 domains: A versatile superfamily in cellular signaling. Cells 2023 12 16 2054 10.3390/cells12162054 37626864
    [Google Scholar]
  5. Kazemein Jasemi N.S. Mehrabipour M. Magdalena Estirado E. Brunsveld L. Dvorsky R. Ahmadian M.R. Functional classification and interaction selectivity landscape of the human SH3 domain superfamily. Cells 2024 13 2 195 10.3390/cells13020195 38275820
    [Google Scholar]
  6. Noble M.E. Musacchio A. Saraste M. Courtneidge S.A. Wierenga R.K. Crystal structure of the SH3 domain in human Fyn; Comparison of the three-dimensional structures of SH3 domains in tyrosine kinases and spectrin. EMBO J. 1993 12 7 2617 2624 10.1002/j.1460‑2075.1993.tb05922.x 7687536
    [Google Scholar]
  7. Yu H. Rosen M.K. Shin T.B. Seidel-Dugan C. Brugge J.S. Schreiber S.L. Solution structure of the SH3 domain of Src and identification of its ligand-binding site. Science 1992 258 5088 1665 1668 10.1126/science.1280858 1280858
    [Google Scholar]
  8. Musacchio A. Noble M. Pauptit R. Wierenga R. Saraste M. Crystal structure of a Src-homology 3 (SH3) domain. Nature 1992 359 6398 851 855 10.1038/359851a0 1279434
    [Google Scholar]
  9. Teyra J. Huang H. Jain S. Guan X. Dong A. Liu Y. Tempel W. Min J. Tong Y. Kim P.M. Bader G.D. Sidhu S.S. Comprehensive analysis of the human SH3 domain family reveals a wide variety of non-canonical specificities. Structure 2017 25 10 1598 1610 10.1016/j.str.2017.07.017 28890361
    [Google Scholar]
  10. Saksela K. Permi P. SH3 domain ligand binding: What’s the consensus and where’s the specificity? FEBS Lett. 2012 586 17 2609 2614 10.1016/j.febslet.2012.04.042 22710157
    [Google Scholar]
  11. Chau J.E. Vish K.J. Boggon T.J. Stiegler A.L. SH3 domain regulation of RhoGAP activity: Crosstalk between p120RasGAP and DLC1 RhoGAP. Nat. Commun. 2022 13 1 4788 10.1038/s41467‑022‑32541‑4 35970859
    [Google Scholar]
  12. Feng S. Chen J.K. Yu H. Simon J.A. Schreiber S.L. Two binding orientations for peptides to the Src SH3 domain: Development of a general model for SH3-ligand interactions. Science 1994 266 5188 1241 1247 10.1126/science.7526465 7526465
    [Google Scholar]
  13. Lim W.A. Richards F.M. Fox R.O. Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 1994 372 6504 375 379 10.1038/372375a0 7802869
    [Google Scholar]
  14. Musacchio A. Saraste M. Wilmanns M. High-resolution crystal structures of tyrosine kinase SH3 domains complexed with proline-rich peptides. Nat. Struct. Biol. 1994 1 8 546 551 10.1038/nsb0894‑546 7664083
    [Google Scholar]
  15. Yu H. Chen J.K. Feng S. Dalgarno D.C. Brauer A.W. Schrelber S.L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 1994 76 5 933 945 10.1016/0092‑8674(94)90367‑0 7510218
    [Google Scholar]
  16. Boggon T.J. Eck M.J. Structure and regulation of Src family kinases. Oncogene 2004 23 48 7918 7927 10.1038/sj.onc.1208081 15489910
    [Google Scholar]
  17. Xu W. Harrison S.C. Eck M.J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 1997 385 6617 595 602 10.1038/385595a0 9024657
    [Google Scholar]
  18. Cloutier J.F. Veillette A. Association of inhibitory tyrosine protein kinase p50csk with protein tyrosine phosphatase PEP in T cells and other hemopoietic cells. EMBO J. 1996 15 18 4909 4918 10.1002/j.1460‑2075.1996.tb00871.x 8890164
    [Google Scholar]
  19. Anafi M. Rosen M.K. Gish G.D. Kay L.E. Pawson T. A potential SH3 domain-binding site in the Crk SH2 domain. J. Biol. Chem. 1996 271 35 21365 21374 10.1074/jbc.271.35.21365 8702917
    [Google Scholar]
  20. Saksela K. Cheng G. Baltimore D. Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef+ viruses but not for down-regulation of CD4. EMBO J. 1995 14 3 484 491 10.1002/j.1460‑2075.1995.tb07024.x 7859737
    [Google Scholar]
  21. Cicchetti P. Mayer B.J. Thiel G. Baltimore D. Identification of a protein that binds to the SH3 region of Abl and is similar to Bcr and GAP-rho. Science 1992 257 5071 803 806 10.1126/science.1379745 1379745
    [Google Scholar]
  22. Kall S.L. Whitlatch K. Smithgall T.E. Lavie A. Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Sci. Rep. 2019 9 1 17121 10.1038/s41598‑019‑53447‑0 31745227
    [Google Scholar]
  23. Luttrell L.M. Ferguson S.S.G. Daaka Y. Miller W.E. Maudsley S. Della Rocca G.J. Lin F.T. Kawakatsu H. Owada K. Luttrell D.K. Caron M.G. Lefkowitz R.J. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 1999 283 5402 655 661 10.1126/science.283.5402.655 9924018
    [Google Scholar]
  24. Mayer B.J. Eck M.J. SH3 Domains: Minding your p’s and q’s. Curr. Biol. 1995 5 4 364 367 10.1016/S0960‑9822(95)00073‑X 7542990
    [Google Scholar]
  25. Bacarizo J. Martinez-Rodriguez S. Martin-Garcia J.M. Andujar-Sanchez M. Ortiz-Salmeron E. Neira J.L. Camara-Artigas A. Electrostatic effects in the folding of the SH3 domain of the c-Src tyrosine kinase: pH-dependence in 3D-domain swapping and amyloid formation. PLoS One 2014 9 12 e113224 10.1371/journal.pone.0113224 25490095
    [Google Scholar]
  26. Hegde R.P. Pavithra G.C. Dey D. Almo S.C. Ramakumar S. Ramagopal U.A. Can the propensity of protein crystallization be increased by using systematic screening with metals? Protein Sci. 2017 26 9 1704 1713 10.1002/pro.3214 28643473 PMC5563152
    [Google Scholar]
  27. Liutkus M. Sasselli I.R. Rojas A.L. Cortajarena A.L. Diverse crystalline protein scaffolds through metal‐dependent polymorphism. Protein Sci. 2024 33 5 e4971 10.1002/pro.4971 38591647
    [Google Scholar]
  28. Camara-Artigas A. Plaza-Garrido M. Martinez-Rodriguez S. Bacarizo J. New crystal form of human ubiquitin in the presence of magnesium. Acta Crystallogr. F Struct. Biol. Commun. 2016 72 1 29 35 10.1107/S2053230X15023390 26750481
    [Google Scholar]
  29. Laganowsky A. Zhao M. Soriaga A.B. Sawaya M.R. Cascio D. Yeates T.O. An approach to crystallizing proteins by metal‐mediated synthetic symmetrization. Protein Sci. 2011 20 11 1876 1890 10.1002/pro.727 21898649
    [Google Scholar]
  30. Qiu X. Janson C.A. Structure of apo acyl carrier protein and a proposal to engineer protein crystallization through metal ions. Acta Crystallogr. D Biol. Crystallogr. 2004 60 9 1545 1554 10.1107/S0907444904015422 15333924
    [Google Scholar]
  31. Duan M. Lv C. Zang J. Leng X. Zhao G. Zhang T. Metals at the helm: Revolutionizing protein assembly and applications. Macromol. Biosci. 2024 24 11 2400126 10.1002/mabi.202400126 39239781
    [Google Scholar]
  32. Schneider D.K. Shi W. Andi B. Jakoncic J. Gao Y. Bhogadi D.K. Myers S.F. Martins B. Skinner J.M. Aishima J. Qian K. Bernstein H.J. Lazo E.O. Langdon T. Lara J. Shea-McCarthy G. Idir M. Huang L. Chubar O. Sweet R.M. Berman L.E. McSweeney S. Fuchs M.R. FMX – The frontier microfocusing macromolecular crystallography beamline at the national synchrotron light source II. J. Synchrotron Radiat. 2021 28 2 650 665 10.1107/S1600577520016173 33650577
    [Google Scholar]
  33. Vonrhein C. Flensburg C. Keller P. Sharff A. Smart O. Paciorek W. Womack T. Bricogne G. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D Biol. Crystallogr. 2011 67 4 293 302 10.1107/S0907444911007773 21460447
    [Google Scholar]
  34. Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010 66 Pt 2 125 132 10.1107/S0907444909047337 20124692 PMC2815665
    [Google Scholar]
  35. Evans P.R. Murshudov G.N. How good are my data and what is the resolution? Acta Crystallogr. D Biol. Crystallogr. 2013 69 7 1204 1214 10.1107/S0907444913000061 23793146
    [Google Scholar]
  36. Afonine P.V. Grosse-Kunstleve R.W. Echols N. Headd J.J. Moriarty N.W. Mustyakimov M. Terwilliger T.C. Urzhumtsev A. Zwart P.H. Adams P.D. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallogr. D Biol. Crystallogr. 2012 68 Pt 4 352 367 10.1107/S0907444912001308 22505256 PMC3322595
    [Google Scholar]
  37. McCoy A.J. Grosse-Kunstleve R.W. Adams P.D. Winn M.D. Storoni L.C. Read R.J. Phaser crystallographic software. J. Appl. Cryst. 2007 40 4 658 674 10.1107/S0021889807021206 19461840
    [Google Scholar]
  38. Terwilliger T.C. Grosse-Kunstleve R.W. Afonine P.V. Moriarty N.W. Zwart P.H. Hung L.W. Read R.J. Adams P.D. Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr. D Biol. Crystallogr. 2008 64 Pt 1 61 69 10.1107/S090744490705024X 18094468 PMC2394820
    [Google Scholar]
  39. Emsley P. Cowtan K. Coot: Model-building tools for molecular graphics. Acta. Crystallogr D Biol. Crystallogr 2004 60 Pt 12 Pt 1 2126 2132 10.1107/S0907444904019158 15572765
    [Google Scholar]
  40. Kabsch W. Sander C. Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features. Biopolymers 1983 22 12 2577 2637 10.1002/bip.360221211 6667333
    [Google Scholar]
  41. Gucwa M. Lenkiewicz J. Zheng H. Cymborowski M. Cooper D.R. Murzyn K. Minor W. CMM —An enhanced platform for interactive validation of metal binding sites. Protein Sci. 2023 32 1 e4525 10.1002/pro.4525 36464767
    [Google Scholar]
  42. Liu Q. Liu Q. Hendrickson W.A. Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data. Acta Crystallogr. D Biol. Crystallogr. 2013 69 7 1314 1332 10.1107/S0907444913001479 23793158
    [Google Scholar]
  43. El Omari K. Forsyth I. Duman R. Orr C.M. Mykhaylyk V. Mancini E.J. Wagner A. Utilizing anomalous signals for nlm identification in macromolecular crystallography. Acta Crystallogr. D Struct. Biol. 2024 80 10 713 721 10.1107/S2059798324008659 39291627
    [Google Scholar]
  44. Sasaki S. Numerical tables of anomalous scattering factors calculated by the cromer and Liberman’s method. 1989 Available from: https://inis.iaea.org/records/yv4rm-p6961.
  45. McNicholas S. Potterton E. Wilson K.S. Noble M.E.M. Presenting your structures: The CCP 4 mg molecular-graphics software. Acta Crystallogr. D Biol. Crystallogr. 2011 67 4 386 394 10.1107/S0907444911007281 21460457
    [Google Scholar]
  46. Pettersen E.F. Goddard T.D. Huang C.C. Meng E.C. Couch G.S. Croll T.I. Morris J.H. Ferrin T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021 30 1 70 82 10.1002/pro.3943 32881101
    [Google Scholar]
  47. Morin A. Eisenbraun B. Key J. Sanschagrin P.C. Timony M.A. Ottaviano M. Sliz P. Collaboration gets the most out of software. eLife 2013 2 e01456 10.7554/eLife.01456 24040512
    [Google Scholar]
  48. Krissinel E. Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007 372 3 774 797 10.1016/j.jmb.2007.05.022 17681537
    [Google Scholar]
  49. Krissinel E. Henrick K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta. Crystallogr D Biol. Crystallogr 2004 60 Pt 12 Pt 1 2256 2268 10.1107/S0907444904026460 15572779
    [Google Scholar]
  50. Holm L. Rosenström P. Dali server: Conservation mapping in 3D. Nucleic Acids Res. 2010 38 Web Server issue W545 W549 10.1093/nar/gkq366 20457744 PMC2896194
    [Google Scholar]
  51. Andreini C. Cavallaro G. Lorenzini S. FindGeo: A tool for determining metal coordination geometry. Bioinformatics 2012 28 12 1658 1660 10.1093/bioinformatics/bts246 22556364
    [Google Scholar]
  52. Opdam L.V. Polanco E.A. de Regt B. Lambertina N. Bakker C. Bonnet S. Pandit A. A screening method for binding synthetic metallo-complexes to haem proteins. Anal. Biochem. 2022 653 114788 10.1016/j.ab.2022.114788 35732212
    [Google Scholar]
  53. Nowakowski A.B. Wobig W.J. Petering D.H. Native SDS-PAGE: High resolution electrophoretic separation of proteins with retention of native properties including bound metal ions. Metallomics 2014 6 5 1068 1078 10.1039/C4MT00033A 24686569
    [Google Scholar]
  54. Sankararamakrishnan R. Verma S. Kumar S. ATCUN‐like metal‐binding motifs in proteins: Identification and characterization by crystal structure and sequence analysis. Proteins 2005 58 1 211 221 10.1002/prot.20265 15508143
    [Google Scholar]
  55. Laussac J.P. Sarker B. Characterization of the copper(II) and nickel(II) transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by carbon-13 and proton NMR spectroscopy. Biochemistry 1984 23 12 2832 2838 10.1021/bi00307a046 6547847
    [Google Scholar]
  56. Maiti B.K. Govil N. Kundu T. Moura J.J.G. Designed metal-ATCUN derivatives: Redox- and non-redox-based applications relevant for chemistry, biology, and medicine. iScience 2020 23 12 101792 10.1016/j.isci.2020.101792 33294799
    [Google Scholar]
  57. Kotuniak R. Bal W. Kinetics of Cu(ii) complexation by ATCUN/NTS and related peptides: A gold mine of novel ideas for copper biology. Dalton Trans. 2021 51 1 14 26 10.1039/D1DT02878B 34816848
    [Google Scholar]
  58. Plaza-Garrido M. Salinas-García M.C. Martínez J.C. Cámara-Artigas A. The effect of an engineered ATCUN motif on the structure and biophysical properties of the SH3 domain of c-Src tyrosine kinase. J. Biol. Inorg. Chem. 2020 25 4 621 634 10.1007/s00775‑020‑01785‑0 32279137
    [Google Scholar]
  59. Bacarizo J. Camara-Artigas A. Atomic resolution structures of the c-Src SH3 domain in complex with two high-affinity peptides from classes I and II. Acta Crystallogr. D Biol. Crystallogr. 2013 69 5 756 766 10.1107/S0907444913001522 23633584
    [Google Scholar]
  60. Davies T.G. Tickle I.J. Fragment screening using X-ray crystallography. Top. Curr. Chem. 2011 317 33 59 10.1007/128_2011_179 21678136
    [Google Scholar]
  61. Patel D. Bauman J.D. Arnold E. Advantages of crystallographic fragment screening: Functional and mechanistic insights from a powerful platform for efficient drug discovery. Prog. Biophys. Mol. Biol. 2014 116 2-3 92 100 10.1016/j.pbiomolbio.2014.08.004 25117499
    [Google Scholar]
  62. Goldschmidt L. Cooper D.R. Derewenda Z.S. Eisenberg D. Toward rational protein crystallization: A web server for the design of crystallizable protein variants. Protein Sci. 2007 16 8 1569 1576 10.1110/ps.072914007 17656576
    [Google Scholar]
  63. Walter T.S. Meier C. Assenberg R. Au K.F. Ren J. Verma A. Nettleship J.E. Owens R.J. Stuart D.I. Grimes J.M. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 2006 14 11 1617 1622 10.1016/j.str.2006.09.005 17098187
    [Google Scholar]
  64. Forse G.J. Ram N. Banatao D.R. Cascio D. Sawaya M.R. Klock H.E. Lesley S.A. Yeates T.O. Synthetic symmetrization in the crystallization and structure determination of CelA from Thermotoga maritima. Protein Sci. 2011 20 1 168 178 10.1002/pro.550 21082721 PMC3047073
    [Google Scholar]
  65. Banatao D.R. Cascio D. Crowley C.S. Fleissner M.R. Tienson H.L. Yeates T.O. An approach to crystallizing proteins by synthetic symmetrization. Proc. Natl. Acad. Sci. USA 2006 103 44 16230 16235 10.1073/pnas.0607674103 17050682
    [Google Scholar]
  66. Yamada H. Tamada T. Kosaka M. Miyata K. Fujiki S. Tano M. Moriya M. Yamanishi M. Honjo E. Tada H. Ino T. Yamaguchi H. Futami J. Seno M. Nomoto T. Hirata T. Yoshimura M. Kuroki R. ‘Crystal lattice engineering,’ an approach to engineer protein crystal contacts by creating intermolecular symmetry: Crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines. Protein Sci. 2007 16 7 1389 1397 10.1110/ps.072851407 17586772
    [Google Scholar]
  67. Salgado E.N. Radford R.J. Tezcan F.A. Metal-directed protein self-assembly. Acc. Chem. Res. 2010 43 5 661 672 10.1021/ar900273t 20192262
    [Google Scholar]
  68. Trakhanov S. Quiocho F.A. Influence of divalent cations in protein crystallization. Protein Sci. 1995 4 9 1914 1919 10.1002/pro.5560040925 8528088
    [Google Scholar]
  69. Handing K.B. Niedzialkowska E. Shabalin I.G. Kuhn M.L. Zheng H. Minor W. Characterizing metal-binding sites in proteins with X-ray crystallography. Nat. Protoc. 2018 13 5 1062 1090 10.1038/nprot.2018.018 29674755
    [Google Scholar]
  70. Pakharukova N. Thomas B.N. Bansia H. Li L. Abzalimov R.R. Kim J. Kahsai A.W. Pani B. Bassford D.K. Liu S. Zhang X. des Georges A. Lefkowitz R.J. Beta-arrestin 1 mediated Src activation via Src SH3 domain revealed by cryo-electron microscopy. bioRxiv 2024 39131402 10.1101/2024.07.31.605623
    [Google Scholar]
  71. Longshore-Neate F. Ceravolo C. Masuga C. Tahti E.F. Blount J.M. Smith S.N. Amacher J.F. The conformation of the nSrc specificity-determining loop in the Src SH3 domain is modulated by a WX conserved sequence motif found in SH3 domains. Front. Mol. Biosci. 2024 11 1487276 10.3389/fmolb.2024.1487276 39698111
    [Google Scholar]
  72. Chen V.B. Arendall W.B. Headd J.J. Keedy D.A. Immormino R.M. Kapral G.J. Murray L.W. Richardson J.S. Richardson D.C. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010 66 Pt 1 12 21 10.1107/S0907444909042073 20057044 PMC2803126
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665417324250929120040
Loading
/content/journals/ppl/10.2174/0109298665417324250929120040
Loading

Data & Media loading...

Supplements

1. Supplementary Tables, Figures, and Figure Legends file (Calicdan_Stiegler_PPL_submission-supplemen-tary.docx). 2. PDB submission validation report file (Calicdan-Stiegler-PDB-9OFX-Validation-Report.pdf). 3. Expression plasmid map file (Calicdan-Stiegler-hSrc-SH3NH_85-143_pET28a_Map.tiff). 4. Expression plasmid full sequence file (Calicdan-Stiegler-hSrc-SH3NH_85-143_pET28a.txt). Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test