Skip to content
2000
image of Cloning, Expression, Purification, and Characterization of Superoxide Dismutase from the Soil Metagenome

Abstract

Introduction

Superoxide Dismutases (SODs) are enzymes that catalyzes the conversion of toxic free radicals generated during stress conditions into nontoxic forms. Thus, the enzyme superoxide dismutase contributes to the adaptation and survival of microorganisms across a variety of environmental conditions, making it an indispensable enzyme during the response to stress. In this study, we embarked upon investigating and characterizing a Superoxide Dismutase (SOD) from DNA extracted directly from garden soil, where the average temperature ranges from 4°C- 45°C.

Materials and Methods

Metagenomic DNA was extracted by employing a kit. The gene was amplified using PCR. The amplified PCR product was gel eluted and ligated into the pGEMT-easy vector, followed by its subcloning in an expression vector. The protein was purified using Ni-NTA chromatography and characterized using biophysical, biochemical, and computational approaches.

Results

The recombinant SOD was expressed and purified; the purified protein exhibited activity and stability over a broad pH and temperature range, with optimal activity observed at 40°C and pH 8, respectively. The enzyme remains completely stable at 40°C for 3 h. However, in contrast, it loses 50% of its activity when incubated at 50°C and 60°C for 3 h. The biophysical investigation revealed stable conformation of the secondary structure of the protein, as evident from circular dichroism and intrinsic Tryptophan (Trp) fluorescence studies. sequence and structural analysis revealed a close similarity of the SOD reported in this study to the Mn SOD of multi- species. Molecular simulation dynamics experiments revealed the all-over conformational stability of protein structures at varying pH, indicating broad pH functioning of the enzyme.

Discussion

The study provides a comprehensive analysis of the structure and function of a superoxide dismutase enzyme derived from a soil metagenome. A Mn2+ binding site identified in the study offers an opportunity to further facilitate engineering and design of mutant SOD.

Conclusion

The enzyme exhibits distinct attributes that hold significant industrial relevance. Owing to the wide functionality of SOD at different pH and temperature, it can be tailored for its potential industrial applications, including therapeutic potential, thus opening new avenues for enhanced antioxidant therapies and novel biocatalyst designing.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665415743250926072254
2025-10-03
2025-11-06
Loading full text...

Full text loading...

References

  1. Ighodaro O.M. Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018 54 4 287 293 10.1016/j.ajme.2017.09.001
    [Google Scholar]
  2. Rajput V.D. Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; Mandzhieva, S. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021 10 4 267 10.3390/biology10040267
    [Google Scholar]
  3. de Obeso Fernandez del Valle A. Scheckhuber C.Q. Superoxide dismutases in eukaryotic microorganisms: Four case studies. Antioxidants 2022 11 2 188 10.3390/antiox11020188
    [Google Scholar]
  4. Stephenie S. Chang Y.P. Gnanasekaran A. Esa N.M. Gnanaraj C. An insight on superoxide dismutase (SOD) from plants for mammalian health enhancement. J. Funct. Foods 2020 68 103917 10.1016/j.jff.2020.103917
    [Google Scholar]
  5. Szőllősi R. Superoxide dismutase (SOD) and abiotic stress tolerance in plants: An overview. Oxidative Damage to Plants. Ahmad P. Academic Press 2014 89 129 10.1016/B978‑0‑12‑799963‑0.00003‑4
    [Google Scholar]
  6. Zhang J. Wang H. Huang Q. Zhang Y. Zhao L. Liu F. Wang G. Four superoxide dismutases of Bacillus cereus 0-9 are non-redundant and perform different functions in diverse living conditions. World J. Microbiol. Biotechnol. 2020 36 1 12 10.1007/s11274‑019‑2786‑7
    [Google Scholar]
  7. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9
    [Google Scholar]
  8. Hinson J.A. Roberts D.W. James L.P. Mechanisms of acetaminophen-induced liver necrosis. Adverse Drug Reactions. Uetrecht J. Heidelberg, Berlin Springer-Verlag 2010 369 405 10.1007/978‑3‑642‑00663‑0_12
    [Google Scholar]
  9. Carillon J. Rouanet J.M. Cristol J.P. Brion R. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action. Pharm. Res. 2013 30 11 2718 2728 10.1007/s11095‑013‑1113‑5
    [Google Scholar]
  10. Khan T.A. Hassan I. Ahmad A. Perveen A. Aman S. Quddusi S. Alhazza I.M. Ashraf G.M. Aliev G. Recent updates on the dynamic association between oxidative stress and neurodegenerative disorders. CNS Neurol. Disord. Drug Targets 2016 15 3 310 320 10.2174/1871527315666160202124518 26831262
    [Google Scholar]
  11. Chaudhary N. Roy Z. Bansal R. Siddiqui L. Understanding the role of free radicals and antioxidant enzymes in human diseases. Curr. Pharm. Biotechnol. 2023 24 10 1265 1276 10.2174/1389201024666221121160822
    [Google Scholar]
  12. Che M. Wang R. Li X. Wang H.Y. Zheng X.F.S. Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 2016 21 1 143 149 10.1016/j.drudis.2015.10.001
    [Google Scholar]
  13. Sheng Y. Abreu I.A. Cabelli D.E. Maroney M.J. Miller A.F. Teixeira M. Valentine J.S. Superoxide dismutases and superoxide reductases. Chem. Rev. 2014 114 7 3854 3918 10.1021/cr4005296
    [Google Scholar]
  14. Karmakar A. Das A.K. Ghosh N. Sil P.C. Superoxide dismutase. Antioxidants Effects in Health. Nabavi S.M. Silva A.T.S. Elsevier 2022 139 166 10.1016/B978‑0‑12‑819096‑8.00027‑6
    [Google Scholar]
  15. Jiang M. Li L. Zhu D. Zhang H. Zhao X. Oxygen reduction in the nanocage of metal–organic frameworks with an electron transfer mediator. J. Mater. Chem. A Mater. Energy Sustain. 2014 2 15 5323 5329 10.1039/C3TA15319C
    [Google Scholar]
  16. Srivastava A.K. Saroj A. Nayak A. Nishad I. Gautam K. Microbial life in stress of oxygen concentration: Physiochemical properties and applications. Microbial Versatility in Varied Environments. Singapore Springer 2020 181 198 10.1007/978‑981‑15‑3028‑9_11
    [Google Scholar]
  17. Pérez V. Hengst M. Kurte L. Dorador C. Jeffrey W.H. Wattiez R. Molina V. Matallana-Surget S. Bacterial survival under extreme UV radiation: A comparative proteomics study of Rhodobacter sp., isolated from high altitude wetlands in Chile. Front. Microbiol. 2017 8 1173 10.3389/fmicb.2017.01173
    [Google Scholar]
  18. Prabhakaran P. Ashraf M.A. Aqma W.S. Microbial stress response to heavy metals in the environment. RSC Advances 2016 6 111 109862 109877 10.1039/C6RA10966G
    [Google Scholar]
  19. Cycoń M. Mrozik A. Piotrowska-Seget Z. Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019 10 338 10.3389/fmicb.2019.00338
    [Google Scholar]
  20. Wang Y. Branicky R. Noë A. Hekimi S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J. Cell Biol. 2018 217 6 1915 1928 10.1083/jcb.201708007
    [Google Scholar]
  21. Jena A.B. Samal R.R. Bhol N.K. Duttaroy A.K. Cellular Red-Ox system in health and disease: The latest update. Biomed. Pharmacother. 2023 162 114606 10.1016/j.biopha.2023.114606
    [Google Scholar]
  22. Huang X. He D. Pan Z. Luo G. Deng J. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation. Mater. Today Bio 2021 11 100124 10.1016/j.mtbio.2021.100124
    [Google Scholar]
  23. Lewandowski Ł. Kepinska M. Milnerowicz H. The copper-zinc superoxide dismutase activity in selected diseases. Eur. J. Clin. Invest. 2019 49 1 e13036 10.1111/eci.13036 30316201
    [Google Scholar]
  24. Liu X. Xu H. Peng H. Wan L. Di D. Qin Z. He L. Lu J. Wang S. Zhao Q. Advances in antioxidant nanozymes for biomedical applications. Coord. Chem. Rev. 2024 502 215610 10.1016/j.ccr.2023.215610
    [Google Scholar]
  25. Kurian G.A. Rajagopal R. Vedantham S. Rajesh M. The role of oxidative stress in myocardial ischemia and reperfusion injury and remodeling: Revisited. Oxid. Med. Cell. Longev. 2016 2016 1656450 10.1155/2016/1656450 27313825
    [Google Scholar]
  26. Rao M.K. Sunkad G. Metaomics approaches to unravel the functioning of multispecies microbial communities. Microbiome Drivers of Ecosystem Function. Academic Press 2024 395 416 10.1016/B978‑0‑443‑19121‑3.00009‑0
    [Google Scholar]
  27. Nesme J. Achouak W. Agathos S.N. Bailey M. Baldrian P. Brunel D. Frostegård Å. Heulin T. Jansson J.K. Jurkevitch E. Kruus K.L. Kowalchuk G.A. Lagares A. Lappin-Scott H.M. Lemanceau P. Le Paslier D. Mandic-Mulec I. Murrell J.C. Myrold D.D. Nalin R. Nannipieri P. Neufeld J.D. O’Gara F. Parnell J.J. Pühler A. Pylro V. Ramos J.L. Roesch L.F.W. Schloter M. Schleper C. Sczyrba A. Sessitsch A. Sjöling S. Sørensen J. Sørensen S.J. Tebbe C.C. Topp E. Tsiamis G. van Elsas J.D. van Keulen G. Widmer F. Wagner M. Zhang T. Zhang X. Zhao L. Zhu Y-G. Vogel T.M. Simonet P. Back to the future of soil metagenomics. Front. Microbiol. 2016 7 73 10.3389/fmicb.2016.00073
    [Google Scholar]
  28. Peskin A.V. Winterbourn C.C. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 2000 293 1-2 157 166 10.1016/S0009‑8981(99)00246‑6
    [Google Scholar]
  29. Ashkenazy H. Abadi S. Martz E. Chay O. Mayrose I. Pupko T. Ben-Tal N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016 44 W1 W344 W350 10.1093/nar/gkw408
    [Google Scholar]
  30. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2
    [Google Scholar]
  31. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255
    [Google Scholar]
  32. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. Ucsf chimera - A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  33. Salomon-Ferrer R. Case D.A. Walker R.C. An overview of the amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121
    [Google Scholar]
  34. Pradeep N.V. Anupama A.K. Pooja J. Categorizing phenomenal features of α-amylase (Bacillus species) using bioinformatic tools. Adv. Lif Sci. Technol 2012 4 27 31
    [Google Scholar]
  35. Eastman P. Swails J. Chodera J.D. McGibbon R.T. Zhao Y. Beauchamp K.A. Wang L.P. Simmonett A.C. Harrigan M.P. Stern C.D. Wiewiora R.P. Brooks B.R. Pande V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol. 2017 13 7 e1005659 10.1371/journal.pcbi.1005659
    [Google Scholar]
  36. Lemkul J.A. Introductory tutorials for simulating protein dynamics with GROMACS. J. Phys. Chem. B 2024 128 39 9418 9435 10.1021/acs.jpcb.4c04901
    [Google Scholar]
  37. Sinha S. Tam B. Wang S.M. Applications of molecular dynamics simulation in protein study. Membranes 2022 12 9 844 10.3390/membranes12090844
    [Google Scholar]
  38. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011
    [Google Scholar]
  39. Mori T. Jung J. Kobayashi C. Dokainish H.M. Re S. Sugita Y. Elucidation of interactions regulating conformational stability and dynamics of SARS-CoV-2 S-protein. Biophys. J. 2021 120 6 1060 1071 10.1016/j.bpj.2021.01.012
    [Google Scholar]
  40. Martins de Oliveira V. Liu R. Shen J. Constant pH molecular dynamics simulations: Current status and recent applications. Curr. Opin. Struct. Biol. 2022 77 102498 10.1016/j.sbi.2022.102498
    [Google Scholar]
  41. Ke Q. Gong X. Liao S. Duan C. Li L. Effects of thermostats/barostats on physical properties of liquids by molecular dynamics simulations. J. Mol. Liq. 2022 365 120116 10.1016/j.molliq.2022.120116
    [Google Scholar]
  42. Hess B. Kutzner C. van der Spoel D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q
    [Google Scholar]
  43. Lü M. Cai R. Wang S. Liu Z. Jiao Y. Fang Y. Zhang X. Purification and characterization of iron-cofactored superoxide dismutase from Enteromorpha linza. Chin. J. Oceanology Limnol. 2013 31 6 1190 1195 10.1007/s00343‑013‑3049‑3
    [Google Scholar]
  44. Padmapriya V. Anand N. Purification and characterization of iron-containing superoxide dismutase from anabaena variabilis Kutz ex Born. et Flah. Biomed. Pharmacol. J. 2015 3 349 356
    [Google Scholar]
  45. Petkar Medha B. Pillai Meena M. Kulkarni Amarja A. Bondre Sushma H. Rao K. Purification and characterization of superoxide dismutase isolated from sewage isolated E. coli. J. Microb. Biochem. Technol. 2013 05 04 10.4172/1948‑5948.1000109
    [Google Scholar]
  46. Kim S.W. Lee S.O. Lee T.H. Purification and characterization of superoxide dismutase from Aerobacter aerogenes. Agric. Biol. Chem. 1991 55 1 101 108 10.1080/00021369.1991.10870561
    [Google Scholar]
  47. Öztürk-Ürek R. Tarhan L. Purification and characterization of superoxide dismutase from chicken liver. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2001 128 2 205 212 10.1016/S1096‑4959(00)00300‑6
    [Google Scholar]
  48. Reddy C.D. Venkaiah B. Purification and characterization of Cu-Zn superoxide dismutases from mungbean (Vigna radiata) seedlings. J. Biosci. 1984 6 1 115 123 10.1007/BF02702863
    [Google Scholar]
  49. Hou Z. Zhao L. Wang Y. Liao X. Purification and characterization of superoxide dismutases from sea buckthorn and chestnut rose. J. Food Sci. 2019 84 4 746 753 10.1111/1750‑3841.14441 30861132
    [Google Scholar]
  50. Folgueira I. Lamas J. de Felipe A.P. Sueiro R.A. Leiro J.M. Identification and molecular characterization of superoxide dismutases isolated from A scuticociliate parasite: Physiological role in oxidative stress. Sci. Rep. 2019 9 1 13329 10.1038/s41598‑019‑49750‑5
    [Google Scholar]
  51. Liu Q. Hang X. Liu X. Tan J. Li D. Yang H. Cloning and heterologous expression of the manganese superoxide dismutase gene from Lactobacillus casei Lc18. Ann. Microbiol. 2012 62 1 129 137 10.1007/s13213‑011‑0237‑2
    [Google Scholar]
  52. Pinmanee P. Sompinit K. Jantimaporn A. Khongkow M. Haltrich D. Nimchua T. Sukyai P. Purification and immobilization of superoxide dismutase obtained from Saccharomyces cerevisiae TBRC657 on bacterial cellulose and its protective effect against oxidative damage in fibroblasts. Biomolecules 2023 13 7 1156 10.3390/biom13071156
    [Google Scholar]
  53. Tidhar A. Rushing M.D. Kim B. Slauch J.M. Periplasmic superoxide dismutase SodCI of Salmonella binds peptidoglycan to remain tethered within the periplasm. Mol. Microbiol. 2015 97 5 832 843 10.1111/mmi.13067
    [Google Scholar]
  54. Ghanmi F. Carré-Mlouka A. Zarai Z. Mejdoub H. Peduzzi J. Maalej S. Rebuffat S. The extremely halophilic archaeon Halobacterium salinarum ETD5 from the solar saltern of Sfax (Tunisia) produces multiple halocins. Res. Microbiol. 2020 171 2 80 90 10.1016/j.resmic.2019.09.003
    [Google Scholar]
  55. Markillie L.M. Varnum S.M. Hradecky P. Wong K.K. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: Radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J. Bacteriol. 1999 181 2 666 669 10.1128/JB.181.2.666‑669.1999
    [Google Scholar]
  56. Assady M. Farahnak A. Golestani A. Esharghian M.R. Superoxide dismutase (SOD) enzyme activity assay in Fasciola spp. parasites and liver tissue extract. Iran. J. Parasitol. 2011 6 17
    [Google Scholar]
  57. Robinett N.G. Peterson R.L. Culotta V.C. Eukaryotic copper-only superoxide dismutases (SODs): A new class of SOD enzymes and SOD-like protein domains. J. Biol. Chem. 2018 293 13 4636 4643 10.1074/jbc.TM117.000182
    [Google Scholar]
  58. Chap T.Y. Nathan V. Balasubramanyam T. Therapeutic potentials of superoxide dismutase: Current status and future prospects. Adv. Chem. Res. 2022 72 195 216
    [Google Scholar]
  59. Robbins D. Zhao Y. Manganese superoxide dismutase in cancer prevention. Antioxid. Redox Signal. 2014 20 10 1628 1645 10.1089/ars.2013.5297
    [Google Scholar]
  60. Turnbaugh P.J. Ley R.E. Mahowald M.A. Magrini V. Mardis E.R. Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006 444 7122 1027 1031 10.1038/nature05414
    [Google Scholar]
  61. Kaur R. Kumar R. Verma S. Kumar A. Rajesh C. Sharma P.K. Structural and functional insights about unique extremophilic bacterial lipolytic enzyme from metagenome source. Int. J. Biol. Macromol. 2020 152 593 604 10.1016/j.ijbiomac.2020.02.210
    [Google Scholar]
  62. Rosano G.L. Ceccarelli E.A. Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb. Cell Fact. 2009 8 1 41 10.1186/1475‑2859‑8‑41
    [Google Scholar]
  63. Ochneva A. Zorkina Y. Abramova O. Pavlova O. Ushakova V. Morozova A. Zubkov E. Pavlov K. Gurina O. Chekhonin V. Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. Int. J. Mol. Sci. 2022 23 22 14498 10.3390/ijms232214498
    [Google Scholar]
  64. Wang Q. Yuan Z. Wu H. Liu F. Zhao J. Molecular characterization of a manganese superoxide dismutase and copper/zinc superoxide dismutase from the mussel Mytilus galloprovincialis. Fish Shellfish Immunol. 2013 34 5 1345 1351 10.1016/j.fsi.2013.01.011
    [Google Scholar]
  65. Thakur A. Kumar P. Lata J. Devi N. Chand D. Thermostable Fe/Mn superoxide dismutase from Bacillus licheniformis SPB-13 from thermal springs of Himalayan region: Purification, characterization and antioxidative potential. Int. J. Biol. Macromol. 2018 115 1026 1032 10.1016/j.ijbiomac.2018.04.155
    [Google Scholar]
  66. López-Peña I. Leigh B.S. Schlamadinger D.E. Kim J.E. Insights into protein structure and dynamics by ultraviolet and visible resonance raman spectroscopy. Biochemistry 2015 54 31 4770 4783 10.1021/acs.biochem.5b00514
    [Google Scholar]
  67. Perry J.J.P. Shin D.S. Getzoff E.D. Tainer J.A. The structural biochemistry of the superoxide dismutases. Biochim. Biophys. Acta. Proteins Proteomics 2010 1804 2 245 262 10.1016/j.bbapap.2009.11.004
    [Google Scholar]
  68. Li H. Feng Z. Sun Y. Ning S. Zhou W. Liu A. Pan F. Zhao X. Zhu H. Lu J.R. Engineering a thermostable iron superoxide dismutase based on manganese superoxide dismutase from Thermus thermophilus. Process Biochem. 2016 51 1 39 47 10.1016/j.procbio.2015.11.001
    [Google Scholar]
  69. Bonetta Valentino R. The structure-function relationships and physiological roles of MnSOD mutants. Biosci. Rep. 2022 42 6 BSR20220202 10.1042/BSR20220202
    [Google Scholar]
  70. Areekit S. Kanjanavas P. Khawsak P. Pakpitchareon A. Potivejkul K. Chansiri G. Chansiri K. Cloning, expression, and characterization of thermotolerant manganese superoxide dismutase from Bacillus sp. MHS47. Int. J. Mol. Sci. 2011 12 1 844 856 10.3390/ijms12010844
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665415743250926072254
Loading
/content/journals/ppl/10.2174/0109298665415743250926072254
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test