Skip to content
2000
image of Structural Insights into Ligand-Induced Conformational Changes in Adenine Phosphoribosyl Transferase from Fusobacterium nucleatum

Abstract

Background

Adenine phosphoribosyltransferase (APRT) is an enzyme that facilitates adenosine monophosphate (AMP) biosynthesis by transferring a phosphoribosyl group to adenine using phosphoribosyl pyrophosphate as a donor. While the human enzyme is well characterized, structural insights into bacterial APRTs remain limited. is associated with periodontal disease, yet its APRT enzyme (APRT) has not been structurally investigated.

Objective

This study aimed to examine the crystal structure of APRT and ligand-induced conformational changes to understand its enzymatic and substrate recognition mechanisms.

Methods

The APRT protein was heterologously expressed in , followed by initial purification using nickel-charged affinity resin chromatography and further purification through size-exclusion chromatography. The APRT structure was resolved using X-ray crystallography and compared with that of APRT (APRT), exhibiting the highest amino acid sequence similarity among bacterial APRT structures.

Results

AMP and phosphate (PO) were observed in the active site of APRT. Significant differences in ligand positioning were observed between the AMP-PO-bound structures of APRT and APRT. Structural shifts induced by AMP-PO binding were detected. The Arg78 and Lys82 residues from the alternate subunit occupied the PO site in the absence of ligands, but they interacted with PO upon AMP-PO binding. Structural comparison of the AMP-PO-bound APRT with that of the adenine-bound APRT highlighted variations in the adenine-binding site and associated structural changes.

Discussion

Structural comparison of the AMP-PO-bound APRT with that of the adenine-bound APRT highlighted variations in the adenine-binding site and the associated structural changes.

Conclusion

The AMP-PO-bound APRT exhibited distinct ligand-binding modes despite sharing a high sequence similarity with APRT. The structures demonstrated ligand movement during bacterial APRT reactions.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665403166251021110505
2026-01-22
2026-02-16
Loading full text...

Full text loading...

References

  1. Young G.H. Lin J.T. Cheng Y.F. Ho C.F. Kuok Q.Y. Hsu R.C. Liao W.R. Chen C.C. Chen H.M. Modulation of adenine phosphoribosyltransferase‐mediated salvage pathway to accelerate diabetic wound healing. FASEB J. 2021 35 3 e21296 10.1096/fj.202001736RR 33675115
    [Google Scholar]
  2. Sinha S. Smith J.L. The PRT protein family. Curr. Opin. Struct. Biol. 2001 11 6 733 739 10.1016/S0959‑440X(01)00274‑3 11751055
    [Google Scholar]
  3. Krenitsky T.A. Koszalka G.W. Tuttle J.V. Purine nucleoside synthesis: An efficient method employing nucleoside phosphorylases. Biochemistry 1981 20 12 3615 3621 10.1021/bi00515a048 6789872
    [Google Scholar]
  4. Eads J.C. Scapin G. Xu Y. Grubmeyer C. Sacchettini J.C. The crystal structure of human hypoxanthine-guanine phosphoribosyltransferase with bound GMP. Cell 1994 78 2 325 334 10.1016/0092‑8674(94)90301‑8 8044844
    [Google Scholar]
  5. Nyhan W.L. Nucleotide synthesis via salvage pathway. In: eLS;Wiley 2001 10.1038/npg.els.0001399
    [Google Scholar]
  6. Flinn A.M. Gennery A.R. Adenosine deaminase deficiency: A review. Orphanet J. Rare Dis. 2018 13 1 65 10.1186/s13023‑018‑0807‑5 29690908
    [Google Scholar]
  7. Cherney M.M. Cherney L.T. Garen C.R. James M.N.G. The structures of phosphoribosyl pyrophosphate synthetase bound to ribose-5-phosphate and ATP analogs. J. Mol. Biol. 2011 413 4 844 856 10.1016/j.jmb.2011.09.007 21963988
    [Google Scholar]
  8. Huyet J. Ozeir M. Burgevin M-C. Pinson B. Chesney F. Remy J-M. Siddiqi A.R. Lupoli R. Pinon G. Saint-Marc C. Structural insights into the forward and reverse enzymatic reactions in human adenine phosphoribosyltransferase. Cell Chem. Biol. 2018 25 6 666 676.e4 10.1016/j.chembiol.2018.02.011
    [Google Scholar]
  9. Krenitsky T.A. Neil S.M. Elion G.B. Hitchings G.H. Adenine phosphoribosyltransferase from monkey liver. Specificity and properties. J. Biol. Chem. 1969 244 17 4779 4784 10.1016/S0021‑9258(18)93692‑6 4309151
    [Google Scholar]
  10. Hochstadt-Ozer J. Stadtman E.R. The regulation of purine utilization in bacteria. I. Purification of adenine phosphoribosyltransferase from Escherichia coli K12 and control of activity by nucleotides. J. Biol. Chem. 1971 246 17 5294 5303 10.1016/S0021‑9258(18)61906‑4 4328693
    [Google Scholar]
  11. Sin I.L. Finch L.R. Adenine phosphoribosyltransferase in Mycoplasma mycoides and Escherichia coli. J. Bacteriol. 1972 112 1 439 444 10.1128/jb.112.1.439‑444.1972 4562405
    [Google Scholar]
  12. Wigler M. Pellicer A. Silverstein S. Axel R. Urlaub G. Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc. Natl. Acad. Sci. USA 1979 76 3 1373 1376 10.1073/pnas.76.3.1373 286319
    [Google Scholar]
  13. Zhang X. Chen Y. Lin X. Hong X. Zhu Y. Li W. He W. An F. Guo H. Adenine phosphoribosyl transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis. Mol. Plant 2013 6 5 1661 1672 10.1093/mp/sst071 23658065
    [Google Scholar]
  14. Thomas C.B. Arnold W.J. Kelley W.N. Human adenine phosphoribosyltransferase: Purification, subunit structure and substrate specificity. In: Purine Metabolism in Man: Enzymes and Metabolic Pathways. Springer 1974 23 32 10.1007/978‑1‑4684‑3294‑7_4
    [Google Scholar]
  15. Hershey H.V. Taylor M.W. Nucleotide sequence and deduced amino acid sequence of Escherichia coli adenine phosphoribosyl-transferase and comparison with other analogous enzymes. Gene 1986 43 3 287 293 10.1016/0378‑1119(86)90218‑0 3527873
    [Google Scholar]
  16. Karlsson J. Prior R.G. Williams K. Lindler L. Brown K.A. Chatwell N. Hjalmarsson K. Loman N. Mack K.A. Pallen M. Popek M. Sandström G. Sjöstedt A. Svensson T. Tamas I. Andersson S.G.E. Wren B.W. Oyston P.C.F. Titball R.W. Sequencing of the Francisella tularensis strain Schu 4 genome reveals the shikimate and purine metabolic pathways, targets for the construction of a rationally attenuated auxotrophic vaccine. Microb. Comp. Genomics 2000 5 1 25 39 10.1089/10906590050145249 11011763
    [Google Scholar]
  17. Shi W. Tanaka K.S.E. Crother T.R. Taylor M.W. Almo S.C. Schramm V.L. Structural analysis of adenine phosphoribosyltransferase from Saccharomyces cerevisiae. Biochemistry 2001 40 36 10800 10809 10.1021/bi010465h 11535055
    [Google Scholar]
  18. Del Arco J. Martinez M. Donday M. Clemente-Suarez V.J. Fernández-Lucas J. Cloning, expression and biochemical characterization of xanthine and adenine phosphoribosyltransferases from Thermus thermophilus HB8. Biocatal. Biotransform. 2018 36 3 216 223 10.1080/10242422.2017.1313837
    [Google Scholar]
  19. Pavithra G.C. Ramagopal U.A. Crystal structures of APRT from Francisella tularensis - an N-H···N hydrogen bond imparts adenine specificity in adenine phosporibosyltransferases. FEBS J. 2018 285 12 2306 2318 10.1111/febs.14481 29694705
    [Google Scholar]
  20. Hove-Jensen B. Andersen K.R. Kilstrup M. Martinussen J. Switzer R.L. Willemoës M. Phosphoribosyl diphosphate (PRPP): Biosynthesis, enzymology, utilization, and metabolic significance. Microbiol. Mol. Biol. Rev. 2016 81 1 00040 00016 10.1128/mmbr 28031352
    [Google Scholar]
  21. Ozeir M. Huyet J. Burgevin M.C. Pinson B. Chesney F. Remy J.M. Siddiqi A.R. Lupoli R. Pinon G. Saint-Marc C. Gibert J.F. Morales R. Ceballos-Picot I. Barouki R. Daignan-Fornier B. Olivier-Bandini A. Augé F. Nioche P. Structural basis for substrate selectivity and nucleophilic substitution mechanisms in human adenine phosphoribosyltransferase catalyzed reaction. J. Biol. Chem. 2019 294 32 11980 11991 10.1074/jbc.RA119.009087 31160323
    [Google Scholar]
  22. Bik E.M. Long C.D. Armitage G.C. Loomer P. Emerson J. Mongodin E.F. Nelson K.E. Gill S.R. Fraser-Liggett C.M. Relman D.A. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010 4 8 962 974 10.1038/ismej.2010.30 20336157
    [Google Scholar]
  23. Brennan C.A. Garrett W.S. Fusobacterium nucleatum — Symbiont, opportunist and oncobacterium. Nat. Rev. Microbiol. 2019 17 3 156 166 10.1038/s41579‑018‑0129‑6 30546113
    [Google Scholar]
  24. Jia O.X. Effects of H2S on oral flora and host inflammatory response. 2016
    [Google Scholar]
  25. Mori S. Barth H.G. Size Exclusion Chromatography 1999 10.1007/978‑3‑662‑03910‑6
    [Google Scholar]
  26. Otwinowski Z. Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 1997 276 307 326 10.1016/S0076‑6879(97)76066‑X 27754618
    [Google Scholar]
  27. Kabsch W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010 66 2 125 132 10.1107/S0907444909047337 20124692
    [Google Scholar]
  28. Vagin A. Teplyakov A. MOLREP: An automated program for molecular replacement. J. Appl. Cryst. 1997 30 6 1022 1025 10.1107/S0021889897006766
    [Google Scholar]
  29. Vagin A. Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 2010 66 1 22 25 10.1107/S0907444909042589 20057045
    [Google Scholar]
  30. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  31. Adams P.D. Afonine P.V. Bunkóczi G. Chen V.B. Davis I.W. Echols N. Headd J.J. Hung L.W. Kapral G.J. Grosse-Kunstleve R.W. McCoy A.J. Moriarty N.W. Oeffner R. Read R.J. Richardson D.C. Richardson J.S. Terwilliger T.C. Zwart P.H. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 2010 66 2 213 221 10.1107/S0907444909052925 20124702
    [Google Scholar]
  32. Murshudov G.N. Skubák P. Lebedev A.A. Pannu N.S. Steiner R.A. Nicholls R.A. Winn M.D. Long F. Vagin A.A. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011 67 4 355 367 10.1107/S0907444911001314 21460454
    [Google Scholar]
  33. DeLano W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr 2002 40 1 82 92
    [Google Scholar]
  34. Bank P.D. Protein data bank Nature New Biol 1971 233 223 10 38
    [Google Scholar]
  35. Krissinel E. Protein interfaces, surfaces and assemblies service PISA at European Bioinformatics Institute. J. Mol. Biol. 2007 372 774 10.1016/j.jmb.2007.05.022 17681537
    [Google Scholar]
  36. Krissinel E. Henrick K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007 372 3 774 797 10.1016/j.jmb.2007.05.022 17681537
    [Google Scholar]
  37. Nichloas K.B. GeneDoc: Analysis and visualization of genetic variation. EMBnet News 1997 4 1 4
    [Google Scholar]
  38. Larkin M.A. Blackshields G. Brown N.P. Chenna R. McGettigan P.A. McWilliam H. Valentin F. Wallace I.M. Wilm A. Lopez R. Thompson J.D. Gibson T.J. Higgins D.G. Clustal W and clustal X version 2.0. Bioinformatics 2007 23 21 2947 2948 10.1093/bioinformatics/btm404 17846036
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665403166251021110505
Loading
/content/journals/ppl/10.2174/0109298665403166251021110505
Loading

Data & Media loading...

Supplements

Purification, crystallization, and X-ray diffraction of adenine phosphoribosyltransferase APRT Electron density maps around the ligand-binding site of APRT. Atomic-level interactions between APRT (chain A) and the symmetry-related molecule (chain B). Comparative interaction analysis of AMP-PO binding residues in APRT and APRT. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test