Skip to content
2000
image of Effect of Adipokinetic Hormone on Learning-Memory in a Scopolamine-Induced Alzheimer's Model in Mice

Abstract

Introduction

Neurosecretory cells of insects synthesize Adipokinetic Hormone (AKH). Previous studies indicated that AKH improves memory functions. This study aimed to explore the effects of AKH on learning and memory in an Alzheimer's disease model.

Methods

Morris Water Maze (MWM), Passive Avoidance (PA), and Modified Elevated Plus Maze (mEPM) tests were conducted in BALB/c mice. Initially, each group consisted of 8 to 9 animals; in total, 120 animals were used in this study. The groups included control, Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), Pht-HrTH (1 and 2 mg/kg), Scopolamine (1 mg/kg), and Scopolamine combinations. Hormones were given for 6 days in the MWM test to evaluate learning and memory before the second trial in the PA test for memory assessment and after the first trial in the mEPM test to examine consolidation.

Results

In the MWM test, Ani-AKH and Pht-HrTH reduced escape latency compared to the scopolamine group (0.05). During the probe trial, Ani-AKH increased time in the escape platform quadrant (0.5) and reversed scopolamine's effects (0.001). Lia-AKH and Pht-HrTh did not affect time in the quadrant but reversed scopolamine's effects (0.01). In the PA test, Ani-AKH reversed scopolamine’s effects (0.5), while Lia-AKH did so in the mEPM test (0.01). The control group showed strong muscarinic receptor staining, while the scopolamine group did not. Ani-AKH and Lia-AKH showed moderate to strong receptor staining, indicating partial restoration.

Discussion

AKH and its analogs may enhance memory function by modulating cholinergic pathways, particularly through the partial restoration of muscarinic receptor activity. These results underscore their potential as investigational therapeutics for neurodegenerative disorders characterized by cognitive decline.

Conclusion

Our study indicates that AKH may help reduce memory impairments, though the effects depend on the specific assessment methods used in the tests.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665380324250602054823
2025-06-27
2025-08-16
Loading full text...

Full text loading...

References

  1. Gäde G. Janssens M.P.E. Kellner R. A novel peptide in the AKH/RPCH family isolated from the corpora cardiaca of the Emperor dragonfly, Anax imperator. Peptides 1994 15 1 1 6 10.1016/0196‑9781(94)90162‑7 8015965
    [Google Scholar]
  2. Gäde G. The explosion of structural information on insect neuropeptides. Fortschr. Chem. Org. Naturst. 1997 71 1 128 10.1007/978‑3‑7091‑6529‑4_1
    [Google Scholar]
  3. Gäde G. Marco H.G. The adipokinetic hormones of Odonata: A phylogenetic approach. J. Insect Physiol. 2005 51 3 333 341 10.1016/j.jinsphys.2004.12.011 15749116
    [Google Scholar]
  4. Mutlu O. Gumuslu E. Kokturk S. Ulak G. Akar F. Erden F. Kaya H. Tanyeri P. Effects of chronic administration of adipokinetic and hypertrehalosemic hormone on animal behavior, BDNF, and CREB expression in the hippocampus and neurogenesis in mice. Fundam. Clin. Pharmacol. 2016 30 1 4 13 10.1111/fcp.12165 26791996
    [Google Scholar]
  5. Mutlu O. Ulak G. Akar F. Erden F. Celikyurt I.K. Bektas E. Tanyeri P. Kaya H. Effects of acute administration of adipokinetic hormone on depression, anxiety, pain, locomotion and memory in mice. Chin. J. Physiol. 2017 60 2 106 113 10.4077/CJP.2017.BAF450 28468028
    [Google Scholar]
  6. Mutlu O. Páleníček T. Pinterová N. Šíchová K. Horáček J. Holubová K. Höschl C. Stuchlík A. Erden F. Valeš K. Effects of the adipokinetic hormone/red pigment-concentrating hormone ( AKH / RPCH ) family of peptides on MK -801-induced schizophrenia models. Fundam. Clin. Pharmacol. 2018 32 6 589 602 10.1111/fcp.12386 29863789
    [Google Scholar]
  7. Mutlu O. Kurtas O. Kleteckova L. Pinterova N. Holubová K. Horacek J. Hoschl C. Uygun I. Rodriguez D.B. Kacer D. Muhametaj F. Vales K. Effects of adipokinetic hormone/red pigment-concentrating hormone family of peptides in olfactory bulbectomy model and posttraumatic stress disorder model of rats. Peptides 2020 134 170408 10.1016/j.peptides.2020.170408 32950565
    [Google Scholar]
  8. Mesulam M.M. Guillozet A. Shaw P. Levey A. Duysen E.G. Lockridge O. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 2002 110 4 627 639 10.1016/S0306‑4522(01)00613‑3 11934471
    [Google Scholar]
  9. Appleyard M.E. Secreted acetylcholinesterase: Non-classical aspects of a classical enzyme. Trends Neurosci. 1992 15 12 485 490 10.1016/0166‑2236(92)90100‑M 1282748
    [Google Scholar]
  10. Soreq H. Seidman S. Acetylcholinesterase — new roles for an old actor. Nat. Rev. Neurosci. 2001 2 4 294 302 10.1038/35067589 11283752
    [Google Scholar]
  11. Ozkul A. Akyol A. Yenisey C. Arpaci E. Kiylioglu N. Tataroglu C. Oxidative stress in acute ischemic stroke. J. Clin. Neurosci. 2007 14 11 1062 1066 10.1016/j.jocn.2006.11.008 17884504
    [Google Scholar]
  12. Chauhan V. Chauhan A. Oxidative stress in Alzheimer’s disease. Pathophysiology 2006 13 3 195 208 10.1016/j.pathophys.2006.05.004 16781128
    [Google Scholar]
  13. Kuhad A. Sethi R. Chopra K. Lycopene attenuates diabetes-associated cognitive decline in rats. Life Sci. 2008 83 3-4 128 134 10.1016/j.lfs.2008.05.013 18585396
    [Google Scholar]
  14. Radionova K.S. Belnik A.P. Ostrovskaya R.U. Original nootropic drug Noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade. Bull. Exp. Biol. Med. 2008 146 1 59 62 10.1007/s10517‑008‑0209‑0 19145351
    [Google Scholar]
  15. Başarır Bozkurt Ş.N. Mutlu O. Rodrigez D.B. Kacer D. Tanyeri P. Çobantürk P. Vales K. Neurochemical effects of the adipokinetic hormone/red pigment concentrating hormone family of peptides in MK-801-induced schizophrenia rat model. Onl. Turkish J. Health Sci. 2023 8 4 526 533 10.26453/otjhs.1374368
    [Google Scholar]
  16. Paoli F. Spignoli G. Pepeu G. Oxiracetam andd-pyroglutamic acid antagonize a disruption of passive avoidance behaviour induced by the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonovalerate. Psychopharmacology 1990 100 1 130 131 10.1007/BF02245803 2153307
    [Google Scholar]
  17. Spignoli G. Magnani M. Giovannini M.G. Pepeu G. Effect of pyroglutamic acid stereoisomers on ecs and scopolamine-induced memory disruption and brain acetylcholine levels in the rat. Pharmacol. Res. Commun. 1987 19 12 901 912 10.1016/0031‑6989(87)90040‑3 3448611
    [Google Scholar]
  18. Pepeu G. Spignoli G. Nootropic drugs and brain cholinergic mechanisms. Prog. Neuropsychopharmacol. Biol. Psychiatry 1989 13 Suppl. S77 S88 10.1016/0278‑5846(89)90112‑7 2694231
    [Google Scholar]
  19. Grioli S. Lomeo C. Quattropani M.C. Spignoli G. Villardita C. Pyroglutamic acid improves the age associated memory impairment. Fundam. Clin. Pharmacol. 1990 4 2 169 173 10.1111/j.1472‑8206.1990.tb00485.x 2190900
    [Google Scholar]
  20. Drago F. Valerio C. D’Agata V. Astuto C. Spadaro F. Continella G. Scapagnini U. Pyroglutamic acid improves learning and memory capacities in old rats. Funct. Neurol. 1988 3 2 137 143 3402813
    [Google Scholar]
  21. Uygun I. Başarır Bozkurt Ş.N. AlYousef M. Khalid Mohammed M.O. Tanyeri P. Akar F. Erden B.F. Mutlu O. Effect of pyroglutamyl peptides on scopolamine-induced learning-memory impairment in mice. Sakarya Med. J. 2023 13 3 446 455 10.31832/smj.1239798
    [Google Scholar]
  22. Yamamoto Y. Mizushige T. Mori Y. Shimmura Y. Fukutomi R. Kanamoto R. Ohinata K. Antidepressant-like effect of food-derived pyroglutamyl peptides in mice. Neuropeptides 2015 51 25 29 10.1016/j.npep.2015.04.002 25957094
    [Google Scholar]
  23. Kumar A. Bachhawat A.K. Pyroglutamic acid: Throwing light on a lightly studied metabolite. Curr. Sci. 2012 102 2 288 297
    [Google Scholar]
  24. Köktürk S. Doğan S. Yılmaz C.E. Cetinkol Y. Mutlu O. Expression of brain-derived neurotrophic factor and formation of migrasome increases in the glioma cells induced by the adipokinetic hormone. Rev. Assoc. Med. Bras. 2024 70 5 20231337 10.1590/1806‑9282.20231337 38775506
    [Google Scholar]
  25. Mutlu O. Tanyeri P. Basarir S. Uygun I. Akar F. Celebi G. Buyukokuroglu M.E. Erden F. Vales K. Effects of pyroglutamyl peptides on depression, anxiety and analgesia in mice. Int. J. Med. Res. Health Sci. 2021 10 56 62
    [Google Scholar]
  26. Beni M. Pellegrini-Giampietro D.E. Moroni F. A new endogenous anxiolytic agent: L-pyroglutamic acid. Fundam. Clin. Pharmacol. 1988 2 2 77 82 10.1111/j.1472‑8206.1988.tb00623.x 2455680
    [Google Scholar]
  27. Ohinata K. Mizushige T. Yamamoto Y. Harada M. Niimura Y. Antidepressant agent or anti-anxiety agent. Patent 2014162735A 2014
  28. Oono S. Kurimoto T. Nakazawa T. Miyoshi T. Okamoto N. Kashimoto R. Tagami Y. Ito Y. Mimura O. Pyroglutamic acid promotes survival of retinal ganglion cells after optic nerve injury. Curr. Eye Res. 2009 34 7 598 605 10.1080/02713680902981292 19899973
    [Google Scholar]
  29. Antonelli T. Carlà V. Lambertini L. Moroni F. Bianchi C. Pyroglutamic acid administration modifies the electrocorticogram and increases the release of acetylcholine and gaba from the guinea-pig cerebral cortex. Pharmacol. Res. Commun. 1984 16 2 189 197 10.1016/S0031‑6989(84)80094‑6 6504968
    [Google Scholar]
  30. Trofimov S.S. Ostrovskaia R.U. Smol'nikova N.M. Nemova E.P. Gudasheva T.A. Kuznetsova E.A. Voronina T.A. The correction with nooglutil and L-pyroglutamyl-D-alanine amide of cognitive disorders in rats due to intrauterine hypoxia. Exp. Clin. Pharmacol. 1995 58 6 10 13 8704601
    [Google Scholar]
  31. Chepkova A.N. Doreulee N.V. Trofimov S.S. Gudasheva T.A. Ostrovskaya R.U. Skrebitsky V.G. Nootropic compound l-pyroglutamyl-d-alanine-amide restores hippocampal long-term potentiation impaired by exposure to ethanol in rats. Neurosci. Lett. 1995 188 3 163 166 10.1016/0304‑3940(95)11421‑R 7609900
    [Google Scholar]
  32. Pivtoraiko V.N. Abrahamson E.E. Leurgans S.E. DeKosky S.T. Mufson E.J. Ikonomovic M.D. Cortical pyroglutamate amyloid-β levels and cognitive decline in Alzheimer’s disease. Neurobiol. Aging 2015 36 1 12 19 10.1016/j.neurobiolaging.2014.06.021 25048160
    [Google Scholar]
  33. Sato T. Tanaka K. Ohnishi Y. Teramoto T. Hirate K. Nishikawa T. The improvement of memory retention and retrieval of a novel vasopressin fragment analog NC-1900. Japan. J. Pharma. 2002 12 1 57P 60P 12491780
    [Google Scholar]
  34. Hori E. Uwano T. Tamura R. Miyake N. Nishijo H. Ono T. Effects of a novel arginine-vasopressin derivative, NC-1900, on the spatial memory impairment of rats with transient forebrain ischemia. Brain Res. Cogn. Brain Res. 2002 13 1 1 15 10.1016/S0926‑6410(01)00083‑0 11867246
    [Google Scholar]
  35. Bales K.R. Tzavara E.T. Wu S. Wade M.R. Bymaster F.P. Paul S.M. Nomikos G.G. Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A antibody. J. Clin. Invest. 2006 116 3 825 832 10.1172/JCI27120 16498501
    [Google Scholar]
  36. Chen Z.R. Huang J.B. Yang S.L. Hong F.F. Role of cholinergic signaling in Alzheimer’s disease. Molecules 2022 27 6 1816 10.3390/molecules27061816 35335180
    [Google Scholar]
  37. Akhtar A. Gupta S.M. Dwivedi S. Kumar D. Shaikh M.F. Negi A. Preclinical models for Alzheimer’s disease: Past, present, and future approaches. ACS Omega 2022 7 51 47504 47517 10.1021/acsomega.2c05609 36591205
    [Google Scholar]
  38. Saul A. Lashley T. Revesz T. Holton J. Ghiso J.A. Coomaraswamy J. Wirths O. Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiol. Aging 2013 34 5 1416 1425 10.1016/j.neurobiolaging.2012.11.014 23261769
    [Google Scholar]
  39. Schlenzig D. Manhart S. Cinar Y. Kleinschmidt M. Hause G. Willbold D. Funke S.A. Schilling S. Demuth H.U. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry 2009 48 29 7072 7078 10.1021/bi900818a 19518051
    [Google Scholar]
  40. Crehan H. Liu B. Kleinschmidt M. Rahfeld J.U. Le K.X. Caldarone B.J. Frost J.L. Hettmann T. Hutter-Paier B. O’Nuallain B. Park M.A. DiCarli M.F. Lues I. Schilling S. Lemere C.A. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer’s-like mice. Alzheimers Res. Ther. 2020 12 1 12 10.1186/s13195‑019‑0579‑8 31931873
    [Google Scholar]
  41. Mutlu O. Ulak G. Kokturk S. Celikyurt I.K. Akar F. Erden F. Effects of homeopathic Anax imperator on behavioural and pain models in mice. Homeopathy 2015 104 1 15 23 10.1016/j.homp.2014.05.002 25576267
    [Google Scholar]
  42. Mutlu O. Ulak G. Kokturk S. Komsuoglu Celikyurt I. Tanyeri P. Akar F. Erden F. Effects of a dragonfly (Anax i.) homeopathic remedy on learning, memory and cell morphology in mice. Homeopathy 2016 105 1 96 101 10.1016/j.homp.2015.07.004 26828004
    [Google Scholar]
  43. Mutlu O. Tanyeri P. Akdemir N. Buyukokuroglu M.E. Akar F. Ulak G. Erden F. Effects of adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides on uterine contraction. Int. J. Med. Res. Health Sci. 2018 7 6 63 67
    [Google Scholar]
  44. Buccellato F.R. D’Anca M. Serpente M. Arighi A. Galimberti D. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis. Biomedicines 2022 10 9 2261 10.3390/biomedicines10092261 36140362
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665380324250602054823
Loading
/content/journals/ppl/10.2174/0109298665380324250602054823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test