Skip to content
2000
Volume 32, Issue 6
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

Neurosecretory cells of insects synthesize Adipokinetic Hormone (AKH). Previous studies indicated that AKH improves memory functions. This study aimed to explore the effects of AKH on learning and memory in an Alzheimer's disease model.

Methods

Morris Water Maze (MWM), Passive Avoidance (PA), and Modified Elevated Plus Maze (mEPM) tests were conducted in BALB/c mice. Initially, each group consisted of 8 to 9 animals; in total, 120 animals were used in this study. The groups included control, Ani-AKH (1 and 2 mg/kg), Lia-AKH (1 and 2 mg/kg), Pht-HrTH (1 and 2 mg/kg), Scopolamine (1 mg/kg), and Scopolamine combinations. Hormones were given for 6 days in the MWM test to evaluate learning and memory before the second trial in the PA test for memory assessment and after the first trial in the mEPM test to examine consolidation.

Results

In the MWM test, Ani-AKH and Pht-HrTH reduced escape latency compared to the scopolamine group (0.05). During the probe trial, Ani-AKH increased time in the escape platform quadrant (0.5) and reversed scopolamine's effects (0.001). Lia-AKH and Pht-HrTh did not affect time in the quadrant but reversed scopolamine's effects (0.01). In the PA test, Ani-AKH reversed scopolamine’s effects (0.5), while Lia-AKH did so in the mEPM test (0.01). The control group showed strong muscarinic receptor staining, while the scopolamine group did not. Ani-AKH and Lia-AKH showed moderate to strong receptor staining, indicating partial restoration.

Discussion

AKH and its analogs may enhance memory function by modulating cholinergic pathways, particularly through the partial restoration of muscarinic receptor activity. These results underscore their potential as investigational therapeutics for neurodegenerative disorders characterized by cognitive decline.

Conclusion

Our study indicates that AKH may help reduce memory impairments, though the effects depend on the specific assessment methods used in the tests.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665380324250602054823
2025-06-27
2025-10-26
Loading full text...

Full text loading...

References

  1. GädeG. JanssensM.P.E. KellnerR. A novel peptide in the AKH/RPCH family isolated from the corpora cardiaca of the Emperor dragonfly, Anax imperator.Peptides19941511610.1016/0196‑9781(94)90162‑78015965
    [Google Scholar]
  2. GädeG. The explosion of structural information on insect neuropeptides.Fortschr. Chem. Org. Naturst.199771112810.1007/978‑3‑7091‑6529‑4_1
    [Google Scholar]
  3. GädeG. MarcoH.G. The adipokinetic hormones of Odonata: A phylogenetic approach.J. Insect Physiol.200551333334110.1016/j.jinsphys.2004.12.01115749116
    [Google Scholar]
  4. MutluO. GumusluE. KokturkS. UlakG. AkarF. ErdenF. KayaH. TanyeriP. Effects of chronic administration of adipokinetic and hypertrehalosemic hormone on animal behavior, BDNF, and CREB expression in the hippocampus and neurogenesis in mice.Fundam. Clin. Pharmacol.201630141310.1111/fcp.1216526791996
    [Google Scholar]
  5. MutluO. UlakG. AkarF. ErdenF. CelikyurtI.K. BektasE. TanyeriP. KayaH. Effects of acute administration of adipokinetic hormone on depression, anxiety, pain, locomotion and memory in mice.Chin. J. Physiol.201760210611310.4077/CJP.2017.BAF45028468028
    [Google Scholar]
  6. MutluO. PáleníčekT. PinterováN. ŠíchováK. HoráčekJ. HolubováK. HöschlC. StuchlíkA. ErdenF. ValešK. Effects of the adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides on MK -801-induced schizophrenia models.Fundam. Clin. Pharmacol.201832658960210.1111/fcp.1238629863789
    [Google Scholar]
  7. MutluO. KurtasO. KleteckovaL. PinterovaN. HolubováK. HoracekJ. HoschlC. UygunI. RodriguezD.B. KacerD. MuhametajF. ValesK. Effects of adipokinetic hormone/red pigment-concentrating hormone family of peptides in olfactory bulbectomy model and posttraumatic stress disorder model of rats.Peptides202013417040810.1016/j.peptides.2020.17040832950565
    [Google Scholar]
  8. MesulamM.M. GuillozetA. ShawP. LeveyA. DuysenE.G. LockridgeO. Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine.Neuroscience2002110462763910.1016/S0306‑4522(01)00613‑311934471
    [Google Scholar]
  9. AppleyardM.E. Secreted acetylcholinesterase: Non-classical aspects of a classical enzyme.Trends Neurosci.1992151248549010.1016/0166‑2236(92)90100‑M1282748
    [Google Scholar]
  10. SoreqH. SeidmanS. Acetylcholinesterase — new roles for an old actor.Nat. Rev. Neurosci.20012429430210.1038/3506758911283752
    [Google Scholar]
  11. OzkulA. AkyolA. YeniseyC. ArpaciE. KiyliogluN. TatarogluC. Oxidative stress in acute ischemic stroke.J. Clin. Neurosci.200714111062106610.1016/j.jocn.2006.11.00817884504
    [Google Scholar]
  12. ChauhanV. ChauhanA. Oxidative stress in Alzheimer’s disease.Pathophysiology200613319520810.1016/j.pathophys.2006.05.00416781128
    [Google Scholar]
  13. KuhadA. SethiR. ChopraK. Lycopene attenuates diabetes-associated cognitive decline in rats.Life Sci.2008833-412813410.1016/j.lfs.2008.05.01318585396
    [Google Scholar]
  14. RadionovaK.S. BelnikA.P. OstrovskayaR.U. Original nootropic drug Noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade.Bull. Exp. Biol. Med.20081461596210.1007/s10517‑008‑0209‑019145351
    [Google Scholar]
  15. Başarır BozkurtŞ.N. MutluO. RodrigezD.B. KacerD. TanyeriP. ÇobantürkP. ValesK. Neurochemical effects of the adipokinetic hormone/red pigment concentrating hormone family of peptides in MK-801-induced schizophrenia rat model.Onl. Turkish J. Health Sci.20238452653310.26453/otjhs.1374368
    [Google Scholar]
  16. PaoliF. SpignoliG. PepeuG. Oxiracetam andd-pyroglutamic acid antagonize a disruption of passive avoidance behaviour induced by the N-methyl-d-aspartate receptor antagonist 2-amino-5-phosphonovalerate.Psychopharmacology1990100113013110.1007/BF022458032153307
    [Google Scholar]
  17. SpignoliG. MagnaniM. GiovanniniM.G. PepeuG. Effect of pyroglutamic acid stereoisomers on ecs and scopolamine-induced memory disruption and brain acetylcholine levels in the rat.Pharmacol. Res. Commun.1987191290191210.1016/0031‑6989(87)90040‑33448611
    [Google Scholar]
  18. PepeuG. SpignoliG. Nootropic drugs and brain cholinergic mechanisms.Prog. Neuropsychopharmacol. Biol. Psychiatry198913Suppl.S77S8810.1016/0278‑5846(89)90112‑72694231
    [Google Scholar]
  19. GrioliS. LomeoC. QuattropaniM.C. SpignoliG. VillarditaC. Pyroglutamic acid improves the age associated memory impairment.Fundam. Clin. Pharmacol.19904216917310.1111/j.1472‑8206.1990.tb00485.x2190900
    [Google Scholar]
  20. DragoF. ValerioC. D’AgataV. AstutoC. SpadaroF. ContinellaG. ScapagniniU. Pyroglutamic acid improves learning and memory capacities in old rats.Funct. Neurol.1988321371433402813
    [Google Scholar]
  21. UygunI. Başarır BozkurtŞ.N. AlYousefM. Khalid MohammedM.O. TanyeriP. AkarF. ErdenB.F. MutluO. Effect of pyroglutamyl peptides on scopolamine-induced learning-memory impairment in mice.Sakarya Med. J.202313344645510.31832/smj.1239798
    [Google Scholar]
  22. YamamotoY. MizushigeT. MoriY. ShimmuraY. FukutomiR. KanamotoR. OhinataK. Antidepressant-like effect of food-derived pyroglutamyl peptides in mice.Neuropeptides201551252910.1016/j.npep.2015.04.00225957094
    [Google Scholar]
  23. KumarA. BachhawatA.K. Pyroglutamic acid: Throwing light on a lightly studied metabolite.Curr. Sci.20121022288297
    [Google Scholar]
  24. KöktürkS. DoğanS. YılmazC.E. CetinkolY. MutluO. Expression of brain-derived neurotrophic factor and formation of migrasome increases in the glioma cells induced by the adipokinetic hormone.Rev. Assoc. Med. Bras.20247052023133710.1590/1806‑9282.2023133738775506
    [Google Scholar]
  25. MutluO. TanyeriP. BasarirS. UygunI. AkarF. CelebiG. BuyukokurogluM.E. ErdenF. ValesK. Effects of pyroglutamyl peptides on depression, anxiety and analgesia in mice.Int. J. Med. Res. Health Sci.2021105662
    [Google Scholar]
  26. BeniM. Pellegrini-GiampietroD.E. MoroniF. A new endogenous anxiolytic agent: L-pyroglutamic acid.Fundam. Clin. Pharmacol.198822778210.1111/j.1472‑8206.1988.tb00623.x2455680
    [Google Scholar]
  27. OhinataK. MizushigeT. YamamotoY. HaradaM. NiimuraY. Antidepressant agent or anti-anxiety agent.Patent 2014162735A2014
  28. OonoS. KurimotoT. NakazawaT. MiyoshiT. OkamotoN. KashimotoR. TagamiY. ItoY. MimuraO. Pyroglutamic acid promotes survival of retinal ganglion cells after optic nerve injury.Curr. Eye Res.200934759860510.1080/0271368090298129219899973
    [Google Scholar]
  29. AntonelliT. CarlàV. LambertiniL. MoroniF. BianchiC. Pyroglutamic acid administration modifies the electrocorticogram and increases the release of acetylcholine and gaba from the guinea-pig cerebral cortex.Pharmacol. Res. Commun.198416218919710.1016/S0031‑6989(84)80094‑66504968
    [Google Scholar]
  30. TrofimovS.S. OstrovskaiaR.U. Smol'nikovaN.M. NemovaE.P. GudashevaT.A. KuznetsovaE.A. VoroninaT.A. The correction with nooglutil and L-pyroglutamyl-D-alanine amide of cognitive disorders in rats due to intrauterine hypoxia.Exp. Clin. Pharmacol.199558610138704601
    [Google Scholar]
  31. ChepkovaA.N. DoreuleeN.V. TrofimovS.S. GudashevaT.A. OstrovskayaR.U. SkrebitskyV.G. Nootropic compound l-pyroglutamyl-d-alanine-amide restores hippocampal long-term potentiation impaired by exposure to ethanol in rats.Neurosci. Lett.1995188316316610.1016/0304‑3940(95)11421‑R7609900
    [Google Scholar]
  32. PivtoraikoV.N. AbrahamsonE.E. LeurgansS.E. DeKoskyS.T. MufsonE.J. IkonomovicM.D. Cortical pyroglutamate amyloid-β levels and cognitive decline in Alzheimer’s disease.Neurobiol. Aging2015361121910.1016/j.neurobiolaging.2014.06.02125048160
    [Google Scholar]
  33. SatoT. TanakaK. OhnishiY. TeramotoT. HirateK. NishikawaT. The improvement of memory retention and retrieval of a novel vasopressin fragment analog NC-1900.Japan. J. Pharma.200212157P60P12491780
    [Google Scholar]
  34. HoriE. UwanoT. TamuraR. MiyakeN. NishijoH. OnoT. Effects of a novel arginine-vasopressin derivative, NC-1900, on the spatial memory impairment of rats with transient forebrain ischemia.Brain Res. Cogn. Brain Res.200213111510.1016/S0926‑6410(01)00083‑011867246
    [Google Scholar]
  35. BalesK.R. TzavaraE.T. WuS. WadeM.R. BymasterF.P. PaulS.M. NomikosG.G. Cholinergic dysfunction in a mouse model of Alzheimer disease is reversed by an anti-A antibody.J. Clin. Invest.2006116382583210.1172/JCI2712016498501
    [Google Scholar]
  36. ChenZ.R. HuangJ.B. YangS.L. HongF.F. Role of cholinergic signaling in Alzheimer’s disease.Molecules2022276181610.3390/molecules2706181635335180
    [Google Scholar]
  37. AkhtarA. GuptaS.M. DwivediS. KumarD. ShaikhM.F. NegiA. Preclinical models for Alzheimer’s disease: Past, present, and future approaches.ACS Omega2022751475044751710.1021/acsomega.2c0560936591205
    [Google Scholar]
  38. SaulA. LashleyT. ReveszT. HoltonJ. GhisoJ.A. CoomaraswamyJ. WirthsO. Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias.Neurobiol. Aging20133451416142510.1016/j.neurobiolaging.2012.11.01423261769
    [Google Scholar]
  39. SchlenzigD. ManhartS. CinarY. KleinschmidtM. HauseG. WillboldD. FunkeS.A. SchillingS. DemuthH.U. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides.Biochemistry200948297072707810.1021/bi900818a19518051
    [Google Scholar]
  40. CrehanH. LiuB. KleinschmidtM. RahfeldJ.U. LeK.X. CaldaroneB.J. FrostJ.L. HettmannT. Hutter-PaierB. O’NuallainB. ParkM.A. DiCarliM.F. LuesI. SchillingS. LemereC.A. Effector function of anti-pyroglutamate-3 Aβ antibodies affects cognitive benefit, glial activation and amyloid clearance in Alzheimer’s-like mice.Alzheimers Res. Ther.20201211210.1186/s13195‑019‑0579‑831931873
    [Google Scholar]
  41. MutluO. UlakG. KokturkS. CelikyurtI.K. AkarF. ErdenF. Effects of homeopathic Anax imperator on behavioural and pain models in mice.Homeopathy20151041152310.1016/j.homp.2014.05.00225576267
    [Google Scholar]
  42. MutluO. UlakG. KokturkS. Komsuoglu CelikyurtI. TanyeriP. AkarF. ErdenF. Effects of a dragonfly (Anax i.) homeopathic remedy on learning, memory and cell morphology in mice.Homeopathy201610519610110.1016/j.homp.2015.07.00426828004
    [Google Scholar]
  43. MutluO. TanyeriP. AkdemirN. BuyukokurogluM.E. AkarF. UlakG. ErdenF. Effects of adipokinetic hormone/red pigment-concentrating hormone (AKH/RPCH) family of peptides on uterine contraction.Int. J. Med. Res. Health Sci.2018766367
    [Google Scholar]
  44. BuccellatoF.R. D’AncaM. SerpenteM. ArighiA. GalimbertiD. The role of glymphatic system in Alzheimer’s and Parkinson’s disease pathogenesis.Biomedicines2022109226110.3390/biomedicines1009226136140362
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665380324250602054823
Loading
/content/journals/ppl/10.2174/0109298665380324250602054823
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test