Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Introduction

(Cowpea), a legume rich in phytochemicals, has been traditionally used to improve fertility and treat various ailments. This study used and methods to evaluate the effects of cowpea protein isolate and essential oil on reproductive hormonal and antioxidant indices.

Methods

Forty (40) female rats were divided into eight groups (n=5). After 14 days of treatment, hormone levels (progesterone, prolactin, testosterone and estradiol) and antioxidant activities (superoxide dismutase (SOD), catalase (CAT) were assessed using biochemical kits and standard procedures. Molecular docking studies were performed using PyRx and Biovia Discovery Studio 2021. The ligands generated through gas chromatography-mass spectroscopy (GCMS) analysis of cowpea oil and the target proteins (SOD and CAT) were from downloaded PubChem and RCSB Protein Data Bank, respectively.

Results

The results of this study showed that cowpea essential oil and protein isolate significantly (<0.05) reduced plasma CAT and SOD activities while increasing their activities in the ovary and liver tissues compared to the infertile untreated group. Consistent administration of either cowpea oil or protein isolate was observed to positively regulate the hormonal indices in the infertile treated groups. Phthalic acid, 2-cyclohexyl ethyl isobutyl ester demonstrated a strong binding affinity and binding constant with SOD and CAT, which suggests that the ligands from cowpea essential oil may have antioxidant and pro-fertility properties that could be developed to treat fertility-related issues.

Conclusion

Based on the results of this study, it can be concluded that has antioxidant property, and can promote fertility, possibly through its rich embedded phytochemicals, which substantiates its traditional claim.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665358634241217094220
2025-01-03
2025-11-07
Loading full text...

Full text loading...

References

  1. SharmaA. ShrivastavaD. SharmaI.V.A. Psychological problems related to infertility.Cureus20221410e3032036407201
    [Google Scholar]
  2. SiraitB.I. RevianiN. UdjungG.I.V.W. Factors affecting infertility in women of reproductive age in the IVF programme.Int. J. Trop. Dis. Health202344657510.9734/ijtdh/2023/v44i11386
    [Google Scholar]
  3. RamyaS. PoornimaP. JananisriA. GeofferinaI.P. BavyataaV. DivyaM. PriyangaP. VadivukarasiJ. SujithaS. ElamathiS. AnandA.V. BalamuralikrishnanB. Role of hormones and the potential impact of multiple stresses on infertility.Stresses20233245447410.3390/stresses3020033
    [Google Scholar]
  4. SilvaJ.F. OcarinoN.M. SerakidesR. Thyroid hormones and female reproduction.Biol. Reprod.201899590792129767691
    [Google Scholar]
  5. AuriemmaR.S. Del VecchioG. ScairatiR. PirchioR. LiccardiA. VerdeN. de AngelisC. MenafraD. PivonelloC. ConfortiA. AlviggiC. PivonelloR. ColaoA. The interplay between prolactin and reproductive system: Focus on uterine pathophysiology.Front. Endocrinol.20201159437010.3389/fendo.2020.59437033162942
    [Google Scholar]
  6. HobeikaE. ArmoutiM. KalaH.S. StoccoC. Ovarian hormones.Hormonal Signaling in Biology and Medicine.Academic Press202056558310.1016/B978‑0‑12‑813814‑4.00025‑0
    [Google Scholar]
  7. BullettiC. BullettiF.M. SciorioR. GuidoM. Progesterone: The key factor of the beginning of life.Int. J. Mol. Sci.202223221413810.3390/ijms23221413836430614
    [Google Scholar]
  8. MulhallJ.P. TrostL.W. BranniganR.E. KurtzE.G. RedmonJ.B. ChilesK.A. LightnerD.J. MinerM.M. MuradM.H. NelsonC.J. PlatzE.A. RamanathanL.V. LewisR.W. Evaluation and management of testosterone deficiency: AUA guideline.J. Urol.2018200242343210.1016/j.juro.2018.03.11529601923
    [Google Scholar]
  9. BarartabarZ. DaneshH. MazloomiS. AlizadehN. PilehvariS. Association of high levels of testosterone and ferritin with overweight in women with PCOS.JABS20211138863894
    [Google Scholar]
  10. WangL. TangJ. WangL. TanF. SongH. ZhouJ. LiF. Oxidative stress in oocyte aging and female reproduction.J. Cell. Physiol.2021236127966798310.1002/jcp.3046834121193
    [Google Scholar]
  11. JelicM.D. MandicA.D. MaricicS.M. SrdjenovicB.U. Oxidative stress and its role in cancer.J. Cancer Res. Ther.2021171222810.4103/jcrt.JCRT_862_1633723127
    [Google Scholar]
  12. LinJ. WangL. Oxidative stress in oocytes and embryo development: Implications for in vitro systems.Antioxid. Redox Signal.202134171394140610.1089/ars.2020.820933115254
    [Google Scholar]
  13. KaltsasA. ZikopoulosA. MoustakliE. ZachariouA. TsirkaG. TsiampaliC. PalapelaN. SofikitisN. DimitriadisF. The silent threat to women’s fertility: Uncovering the devastating effects of oxidative stress.Antioxidants2023128149010.3390/antiox1208149037627485
    [Google Scholar]
  14. PughS.J. SchistermanE.F. BrowneR.W. LynchA.M. MumfordS.L. PerkinsN.J. SilverR. SjaardaL. StanfordJ.B. Wactawski-WendeJ. WilcoxB. GrantzK.L. Preconception maternal lipoprotein levels in relation to fecundability.Hum. Reprod.20173251055106310.1093/humrep/dex05228333301
    [Google Scholar]
  15. MintzioriG. NigdelisM.P. MathewH. MousiolisA. GoulisD.G. MantzorosC.S. The effect of excess body fat on female and male reproduction.Metabolism202010715419310.1016/j.metabol.2020.15419332119876
    [Google Scholar]
  16. LoyS.L. CheungY.B. SohS.E. NgS. TintM.T. ArisI.M. BernardJ.Y. ChongY.S. GodfreyK.M. ShekL.P. TanK.H. LeeY.S. TanH.H. ChernB.S.M. LekN. YapF. ChanS.Y. ChiC. ChanJ.K.Y. Female adiposity and time-to-pregnancy: A multiethnic prospective cohort.Hum. Reprod.201833112141214910.1093/humrep/dey30030285230
    [Google Scholar]
  17. GambineriA. LaudisioD. MaroccoC. RadelliniS. ColaoA. SavastanoS. Female infertility: Which role for obesity?Int. J. Obes. Suppl.201991657210.1038/s41367‑019‑0009‑131391925
    [Google Scholar]
  18. AwoteO. KazeemM. OjekaleA. AyanleyeO. RamoniH. Prospects of silver nanoparticles (AgNPs) synthesized by Justicia secunda aqueous extracts on diabetes and its related complications.Proc. Nigerian Acad. Sci.20231618710410.57046/WTNO8179
    [Google Scholar]
  19. OdingaT. Worlu-WoduQ. DeekaeS. Bioprospective screening of Ricinodendron Heudelotii seeds.J. Anal. Pharm. Res.20163700084
    [Google Scholar]
  20. DuraipandianM. PooraniK.E. AbiramiH. AnushaM.B. Vigna unguiculata (L.) Walp: a strategic crop for nutritional security, well-being, and environmental protection.Legume Res.20222.10.5772/intechopen.103025
    [Google Scholar]
  21. SebethaE. ModiA. OwoeyeL. Cowpea crude protein as affected by cropping system, site, and nitrogen fertilization.J. Agric. Sci.201571224
    [Google Scholar]
  22. DeviS. MishraP. SonkarS. SinghS. PrakashH. Nutritional properties and utilization of cowpea seeds, leaves and their health benefits.J. Adv. Res. Food Sci. Nutr.2020321410.24321/2582.3892.202008
    [Google Scholar]
  23. JayathilakeC. VisvanathanR. DeenA. BangamuwageR. JayawardanaB.C. NammiS. LiyanageR. Cowpea: an overview on its nutritional facts and health benefits.J. Sci. Food Agric.201898134793480610.1002/jsfa.907429656381
    [Google Scholar]
  24. AbebeB.K. AlemayehuM.T. A review of the nutritional use of cowpea (Vigna unguiculata L. Walp) for human and animal diets.J. Agric. Food Res.20221010038310.1016/j.jafr.2022.100383
    [Google Scholar]
  25. AntovaG.A. StoilovaT.D. IvanovaM.M. Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria.J. Food Compos. Anal.201433214615210.1016/j.jfca.2013.12.005
    [Google Scholar]
  26. PeyranoF. SperoniF. AvanzaM.V. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure.Innov. Food Sci. Emerg. Technol.201633384610.1016/j.ifset.2015.10.014
    [Google Scholar]
  27. LowryO. RosebroughN. FarrA.L. RandallR. Protein measurement with the Folin phenol reagent.J. Biol. Chem.1951193126527510.1016/S0021‑9258(19)52451‑614907713
    [Google Scholar]
  28. OladimejiSO AwoteOK IgbalayeJO Effects of ethanolic leaf extract of Spondias mombin (IYEYE) fed to female albino rats on hormonal indices, lipid profile and enzymatic antioxidant activity.IOSR J. Biotechnol. Biochem2022831729
    [Google Scholar]
  29. OladimejiS.O. IgbalayeJ.O. AwoteO.K. ShodimuB.O. OladeindeD.T. OmorowaV.T. OluwoleS.M. AkinyemiY.A. ShobowaleA.Y. JimohD. BalogunS.T. AdekoyaE.A. Cissampelos pareira ethanolic extract modulates hormonal indices, lipid profile, and oxidative parameters in transient infertility-induced female albino rats.Bio-Research20232121961197210.4314/br.v21i2.4
    [Google Scholar]
  30. AwoteO.K. OjekaleA.B. KazeemM.I. AdeyemoA.G. IgbalayeJ.O. IlesanmiR. KanmodiO.B. AzeezH.D. RamoniH.T. SalakoD.S. Antidiabetic, antioxidant, antiglycation, and anti-inflammatory potentials of green-synthesized silver nanoparticles using Telfairia occidentalis leaf and stem aqueous extracts.Letters in Appl. NanoBioSci202413141
    [Google Scholar]
  31. OladimejiS.O. SoaresA.S. IgbalayeJ.O. AwoteO.K. AdigunA.K. AwoyemiZ.O. Ethanolic root extract of Urtica dioica exhibits pro-fertility and antioxidant activities in female albino rats.Int. J. Biochem. Res. Rev.2022318293810.9734/ijbcrr/2022/v31i830344
    [Google Scholar]
  32. AwoteO.K. AmisuK.O. AnagunO.S. DohouF.P. OlokunolaE.R. ElumN.O. In vitro and molecular docking evaluation of the antibacterial, antioxidant, and antidiabetic effects of silver nanoparticles from Cymbopogon citratus leaf.TJNPR2024898400841110.26538/tjnpr/v8i9.23
    [Google Scholar]
  33. AwoteO.K. KanmodiR.I. EbubeS.C. AbdulganniyyuZ.F. Nutritional profile, gc-ms analysis and in-silico anti-diabetic phytocompounds candidature of Jatropha gossypifolia leaf extracts.Curr. Drug Discov. Technol.2024213e22122322476410.2174/011570163826714323092517220737817655
    [Google Scholar]
  34. Eddie-AmadiB.F. DikeC.S. EzejioforA.N. Public health concerns of environmental exposure connected with female infertility.IPS J. Public Health202211153010.54117/ijph.v1i1.1
    [Google Scholar]
  35. ChaukeS.H. KritzingerQ. Vigna unguiculata.Underexplored Medicinal Plants from Sub-Saharan Africa.Elsevier202028729310.1016/B978‑0‑12‑816814‑1.00044‑2
    [Google Scholar]
  36. KhusniyatiE. SariA.A. YueniwatiY. NoorhamdaniN. NursetaT. KemanK. The effects of Vigna unguiculata on cardiac oxidative stress and aorta estrogen receptor-β expression of ovariectomized rats.Asian Pac. J. Reprod.20143426326710.1016/S2305‑0500(14)60037‑3
    [Google Scholar]
  37. KatochR. TripathiA. Nutraceutical and pharmacological properties of Vigna species.Indian J. Agric. Biochem.2017301102010.5958/0974‑4479.2017.00002.8
    [Google Scholar]
  38. PriyadarshiniR.D. BeatriceD.A. C SivarajS. Antioxidant potential, antidiabetic, and anti-inflammatory activities of White Cowpea (Vigna unguiculata L.): An in vitro study.Asian J. Biol. Life Sci.202412356457310.5530/ajbls.2023.12.74
    [Google Scholar]
  39. Concepción-ZavaletaM.J. Coronado-ArroyoJ.C. Quiroz-AldaveJ.E. Durand-VásquezM.C. Ildefonso-NajarroS.P. Rafael-RoblesL.P. Concepción-UrteagaL.A. Gamarra-OsorioE.R. Suárez-RojasJ. Paz-IbarraJ. Endocrine factors associated with infertility in women: An updated review.Expert Rev. Endocrinol. Metab.202318539941710.1080/17446651.2023.225640537702309
    [Google Scholar]
  40. ZhairaD. NafisaA. IkramN. A mosaic of risk factors for female infertility in Pakistan.JRMC2019238084
    [Google Scholar]
  41. SuH.W. YiY.C. WeiT.Y. ChangT.C. ChengC.M. Detection of ovulation, a review of currently available methods.Bioeng. Transl. Med.20172323824610.1002/btm2.1005829313033
    [Google Scholar]
  42. FindlayJ.K. LiewS.H. SimpsonE.R. KorachK.S. Estrogen signaling in the regulation of female reproductive functions.Handb. Exp. Pharmacol.2010198293510.1007/978‑3‑642‑02062‑9_2
    [Google Scholar]
  43. FitrianingtyasR. ChristianaI. HandayaniR. AnggraeniE. MauludiyahZ. HidayatiS. The effect of Vigna unguiculata on the estrogen receptor-α expression and the endometrial thickness in rats treated with depot medroxyprogesterone acetate (DMPA).Healthc. Low Resour. Settings202312(1).10.4081/hls.2023.11766
    [Google Scholar]
  44. OliverR. PillarisettyL.S. Anatomy, Abdomen and Pelvis, Ovary Corpus Luteum.StatPearls.Treasure Island, FLStatPearls Publishing2024
    [Google Scholar]
  45. RiyaphanJ. PhamD.C. LeongM.K. WengC.F. In silico approaches to identify polyphenol compounds as α-glucosidase and α-amylase inhibitors against type-II diabetes.Biomolecules20211112187710.3390/biom1112187734944521
    [Google Scholar]
  46. WuC. LiuY. YangY. ZhangP. ZhongW. WangY. WangQ. XuY. LiM. LiX. ZhengM. ChenL. LiH. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods.Acta Pharm. Sin. B202010576678810.1016/j.apsb.2020.02.00832292689
    [Google Scholar]
  47. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.00724981612
    [Google Scholar]
  48. SharmaA.D. KaurI. Essential oil from Cymbopogon citratus exhibits “anti-aspergillosis” potential: In-silico molecular docking and in vitro studies.Bull. Natl. Res. Cent.20224612310.1186/s42269‑022‑00711‑535125860
    [Google Scholar]
  49. GulweA.B. EbubeS.C. AwoteO.K. AmbhoreA.N. Molecular docking study of selected bioactive compounds in Alzheimer’s disease using BACE-1 (PDB ID: 5QCU) as target protein.J. Popul. Ther. Clin. Pharmacol.2023303787793
    [Google Scholar]
  50. SharomF.J. Complex interplay between the P-glycoprotein multidrug efflux pump and the membrane: Its role in modulating protein function.Front. Oncol.2014444110.3389/fonc.2014.0004124624364
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665358634241217094220
Loading
/content/journals/ppl/10.2174/0109298665358634241217094220
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test