Skip to content
2000
Volume 32, Issue 2
  • ISSN: 0929-8665
  • E-ISSN: 1875-5305

Abstract

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs). These peptides are secreted by granular glands in the skin and protect the animal against microorganisms entering its body through the skin. AMPs offer an effective and rapid defense against pathogenic microorganisms and have cationic and amphiphilic structures. These peptides are small gene-encoded molecules of 8-50 amino acid residues synthesized by ribosomes. These small molecules typically exhibit activity against bacteria, viruses, fungi, and even cancer cells. It is known that today's amphibian AMPs originated from a common precursor gene 150 million years ago and that the origin of these peptides is preprodermaseptins. Today, antibiotic resistance has occurred due to the incorrect use of antibiotics. Traditional antibiotics are becoming increasingly inadequate. AMPs are considered promising candidates for the development of new-generation antibiotics. Therefore, new antibiotic discoveries are needed. AMPs are suitable molecules for new-generation antibiotics that are both fast and have different killing mechanisms. One of the biggest problems in the clinical applications of AMPs is their poor stability. AMPs generally have limited tropical applications because they are sensitive to protease degradation. Coating these peptides with nanomaterials to make them more stable can solve this problem.

Loading

Article metrics loading...

/content/journals/ppl/10.2174/0109298665356946241218103145
2025-01-08
2025-09-02
Loading full text...

Full text loading...

References

  1. WellsK.D. The ecology and behavior of amphibians.The Ecology and Behavior of Amphibians.University of Chicago Press2019
    [Google Scholar]
  2. VittL.J. CaldwellJ.P. Herpetology An Introductory Biology of Amphibians and Reptiles.4th edChinaElsevier2014523524
    [Google Scholar]
  3. ZugG.R. VittL. CaldwellJ.P. Herpetology: An Introductory Biology of Amphibians and Reptiles.Academic press2001
    [Google Scholar]
  4. SchwagerJ. MikoryakC.A. SteinerL.A. Amino acid sequence of heavy chain from Xenopus laevis IgM deduced from cDNA sequence: Implications for evolution of immunoglobulin domains.Proc. Natl. Acad. Sci. USA19888572245224910.1073/pnas.85.7.22452451244
    [Google Scholar]
  5. FlainikM.F. PasquierL.D. The major histocompatibility complex of frogs.Immunol. Rev.19901131476310.1111/j.1600‑065X.1990.tb00036.x2180810
    [Google Scholar]
  6. TurnerR.J. ManningM.J. Thymic dependence of amphibian antibody responses.Eur. J. Immunol.19744534334610.1002/eji.18300405064137317
    [Google Scholar]
  7. NonakaM. NamikawaC. KatY. SasakiM. Salter-CidL. FlajnikM.F. Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization.Proc. Natl. Acad. Sci. USA1997945789579110.1073/pnas.94.11.5789
    [Google Scholar]
  8. FlajnikM.F. KasaharaM. Comparative genomics of the MHC.Immunity200115335136210.1016/S1074‑7613(01)00198‑411567626
    [Google Scholar]
  9. Hadji-AzimiI. CoosemansV. CanicattiC. Atlas of adult Xenopus laevis laevis hematology.Dev. Comp. Immunol.198711480787410.1016/0145‑305X(87)90068‑13440505
    [Google Scholar]
  10. Carrillo-FargaJ. CastellA. PérezA. RondánA. Langerhans-like cells in amphibian epidermis.J. Anat.199017239452148747
    [Google Scholar]
  11. HortonT.L. MinterR. StewartR. RitchieP. WatsonM.D. HortonJ.D. Xenopus NK cells identified by novel monoclonal antibodies.Eur. J. Immunol.200030260461310.1002/1521‑4141(200002)30:2<604::AID‑IMMU604>3.0.CO;2‑X10671217
    [Google Scholar]
  12. Rollins-SmithL.A. ConlonJ.M. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations.Dev. Comp. Immunol.200529758959810.1016/j.dci.2004.11.00415784290
    [Google Scholar]
  13. SjöbergE. FlockA. Innervation of skin glands in the frog.Cell Tissue Res.19761721819110.1007/BF002260501086717
    [Google Scholar]
  14. ClarkD.P. DurellS. MaloyW.L. ZasloffM. Ranalexin. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin.J. Biol. Chem.199426914108491085510.1016/S0021‑9258(17)34136‑48144672
    [Google Scholar]
  15. DemasG. NelsonR.J. NelsonR. Ecoimmunology.OUP USA2012
    [Google Scholar]
  16. DubosR.J. Studies on a bactericidal agent extracted from a soil bacillus: I. Preparattın of the agent. Its activity in vitro.J. Exp. Med.193970111010.1084/jem.70.1.119870884
    [Google Scholar]
  17. Van EppsH.L. René Dubos: Unearthing antibiotics.J. Exp. Med.2006203225910.1084/jem.2032fta16528813
    [Google Scholar]
  18. StecB. Plant thionins – The structural perspective.Cell. Mol. Life Sci.200663121370138510.1007/s00018‑005‑5574‑516715411
    [Google Scholar]
  19. JagoW. JagoW. Toxic action of wheat flour to brewer’s yeast.Industrial Fermentations. AllenW. New YorkThe Chemical Catering Company1926128167
    [Google Scholar]
  20. FlemingA. On a remarkable bacteriolytic element found in tissues and secretions.Proc. R. Soc. Lond., B19229365330631710.1098/rspb.1922.0023
    [Google Scholar]
  21. BenkerroumN. Antimicrobial activity of lysozyme with special relevance to milk.Afr. J. Biotechnol.2008748564867
    [Google Scholar]
  22. LehrerR.I. Evolution of antimicrobial peptides: A view from the cystine chapel. In: Antimicrobial Peptides and Innate Immunity, Basel: Springer Basel. 201312710.1007/978‑3‑0348‑0541‑4_1
    [Google Scholar]
  23. WangG. LiX. WangZ. APD3: The antimicrobial peptide database as a tool for research and education.Nucleic Acids Res.201644D1D1087D109310.1093/nar/gkv127826602694
    [Google Scholar]
  24. BarlowP.G. SvobodaP. MackellarA. NashA.A. YorkI.A. PohlJ. DavidsonD.J. DonisR.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37.PLoS One2011610e2533310.1371/journal.pone.002533322031815
    [Google Scholar]
  25. WiesnerJ. VilcinskasA. Antimicrobial peptides: The ancient arm of the human immune system.Virulence20101544046410.4161/viru.1.5.1298321178486
    [Google Scholar]
  26. HancockR.E.W. SahlH.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies.Nat. Biotechnol.200624121551155710.1038/nbt126717160061
    [Google Scholar]
  27. HancockR.E.W. DiamondG. The role of cationic antimicrobial peptides in innate host defences.Trends Microbiol.20008940241010.1016/S0966‑842X(00)01823‑010989307
    [Google Scholar]
  28. HancockR.E.W. ChappleD.S. Peptide antibiotics.Antimicrob. Agents Chemother.19994361317132310.1128/AAC.43.6.131710348745
    [Google Scholar]
  29. HancockR.E.W. RozekA. Role of membranes in the activities of antimicrobial cationic peptides.FEMS Microbiol. Lett.2002206214314910.1111/j.1574‑6968.2002.tb11000.x11814654
    [Google Scholar]
  30. MatsuzakiK. Control of cell selectivity of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2009178881687169210.1016/j.bbamem.2008.09.01318952049
    [Google Scholar]
  31. BrogdenK.A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?Nat. Rev. Microbiol.20053323825010.1038/nrmicro109815703760
    [Google Scholar]
  32. ZaiouM. Multifunctional antimicrobial peptides: Therapeutic targets in several human diseases.J. Mol. Med.200785431732910.1007/s00109‑006‑0143‑417216206
    [Google Scholar]
  33. HamillP. BrownK. JenssenH. HancockR.E.W. Novel anti-infectives: Is host defence the answer?Curr. Opin. Biotechnol.200819662863610.1016/j.copbio.2008.10.00619000763
    [Google Scholar]
  34. YangD. BiragynA. KwakL.W. OppenheimJ.J. Mammalian defensins in immunity: More than just microbicidal.Trends Immunol.200223629129610.1016/S1471‑4906(02)02246‑912072367
    [Google Scholar]
  35. ZasloffM. Antimicrobial peptides of multicellular organisms.Nature2002415687038939510.1038/415389a11807545
    [Google Scholar]
  36. Anaya-LópezJ.L. López-MezaJ.E. Ochoa-ZarzosaA. Bacterial resistance to cationic antimicrobial peptides.Crit. Rev. Microbiol.201339218019510.3109/1040841X.2012.69902522799636
    [Google Scholar]
  37. LaForceF.M. BooseD.S. Effect of zinc and phosphate on an antibacterial peptide isolated from lung lavage.Infect. Immun.198445369269610.1128/iai.45.3.692‑696.19846469356
    [Google Scholar]
  38. BrogdenK.A. Ovine pulmonary surfactant induces killing of Pasteurella haemolytica, Escherichia coli, and Klebsiella pneumoniae by normal serum.Infect. Immun.199260125182518910.1128/iai.60.12.5182‑5189.19921452351
    [Google Scholar]
  39. RanaM. ChatterjeeS. KochharS. PereiraB.M.J. Antimicrobial peptides: A new dawn for regulating fertility and reproductive tract infections.J. Endocrinol. Reprod.200628895
    [Google Scholar]
  40. BrogdenK.A. De LuccaA.J. BlandJ. ElliottS. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica.Proc. Natl. Acad. Sci. USA199693141241610.1073/pnas.93.1.4128552650
    [Google Scholar]
  41. BrogdenK.A. AckermannM. McCrayP.B.Jr TackB.F. Antimicrobial peptides in animals and their role in host defences.Int. J. Antimicrob. Agents200322546547810.1016/S0924‑8579(03)00180‑814602364
    [Google Scholar]
  42. DuquesneS. Destoumieux-GarzónD. PeduzziJ. RebuffatS. Microcins, gene-encoded antibacterial peptides from enterobacteria.Nat. Prod. Rep.200724470873410.1039/b516237h17653356
    [Google Scholar]
  43. RebuffatS. Microcins from Enterobacteria: On the Edge Between Gram-Positive Bacteriocins and Colicins.New YorkSpringer201133334910.1007/978‑1‑4419‑7692‑5_17
    [Google Scholar]
  44. HengN.C.K. WescombeP.A. BurtonJ.P. JackR.W. TaggJ.R. The diversity of bacteriocins produced by Gram-positive bacteria.Bacteriocins – Ecology and Evolution in Bacteriocins: ecology and evolutionBerlin, HeidelbergSpringer Berlin Heidelberg20074592
    [Google Scholar]
  45. ShandR.F. LeyvaK.J. Peptide and protein antibiotics from the domain archaea: Halocins and sulfolobicins.Bacteriocins: Ecology and EvolutionSpringer Berlin Heidelberg200793109
    [Google Scholar]
  46. ShandR.F. LeyvaK.J. Archaeal Antimicrobials: An Undiscovered CountryCaister Academic PressWymondham2008
    [Google Scholar]
  47. DicksL.M.T. HeunisT.D.J. Van StadenD.A. BrandA. NollK.S. ChikindasM.L. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria.New YorkSpringer201139142110.1007/978‑1‑4419‑7692‑5_19
    [Google Scholar]
  48. BarraD. SimmacoM. Amphibian skin: A promising resource for antimicrobial peptides.Trends Biotechnol.199513620520910.1016/S0167‑7799(00)88947‑77598843
    [Google Scholar]
  49. ClarkeB.T. The natural history of amphibian skin secretions, their normal functioning and potential medical applications.Biol. Rev. Camb. Philos. Soc.199772336537910.1111/j.1469‑185X.1997.tb00018.x9336100
    [Google Scholar]
  50. ErspamerV. Biogenic amines and active polypeptides of the amphibian skin.Annu. Rev. Pharmacol.197111132735010.1146/annurev.pa.11.040171.0015514948501
    [Google Scholar]
  51. GomesA. GiriB. SahaA. MishraR. DasguptaS.C. DebnathA. GomesA. Bioactive molecules from amphibian skin: Their biological activities regarding therapeutic potentials for possible drug development.Indian J. Exp. Biol.2007457579593
    [Google Scholar]
  52. Rollins-SmithL.A. The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines.Biochim. Biophys. Acta Biomembr.2009178881593159910.1016/j.bbamem.2009.03.00819327341
    [Google Scholar]
  53. RinaldiA.C. Antimicrobial peptides from amphibian skin: An expanding scenario: Commentary.Curr. Opin. Chem. Biol.20026679980410.1016/S1367‑5931(02)00401‑512470734
    [Google Scholar]
  54. DudaT.F.Jr VanhoyeD. NicolasP. Roles of diversifying selection and coordinated evolution in the evolution of Amphibian antimicrobial peptides.Mol. Biol. Evol.200219685886410.1093/oxfordjournals.molbev.a00414312032242
    [Google Scholar]
  55. ConlonJ.M. MechkarskaM. Host-defense peptides with therapeutic potential from skin secretions of frogs from the family pipidae.Pharmaceuticals201471587710.3390/ph701005824434793
    [Google Scholar]
  56. HarrisF. DennisonS. PhoenixD. Anionic antimicrobial peptides from eukaryotic organisms.Curr. Protein Pept. Sci.200910658560610.2174/13892030978963058919751192
    [Google Scholar]
  57. ZasloffM. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor.Proc. Natl. Acad. Sci. USA198784155449545310.1073/pnas.84.15.54493299384
    [Google Scholar]
  58. HoffmannW. RichterK. KreilG. A novel peptide designated PYLa and its precursor as predicted from cloned mRNA of Xenopus laevis skin.EMBO J.19832571171410.1002/j.1460‑2075.1983.tb01489.x6688991
    [Google Scholar]
  59. WadeD. SilveiraA. SilberringbJ. KuuselacP. LankinenH. Temporin antibiotic peptides: A review and derivation of a consensus sequence.Protein Pept. Lett.20007634935710.2174/092986650706221207144422
    [Google Scholar]
  60. RinaldiA.C. ConlonJ.M. Temporins.Anphibian/Skin Peptides2nd edHandbook of Biologically Active Peptides. ElsevierLondon2013400406
    [Google Scholar]
  61. RomeroS.M. CardilloA.B. Martínez CeronM.C. CamperiS.A. GiudicessiS.L. Temporins: An approach of potential pharmaceutic candidates.Surg. Infect.202021430932210.1089/sur.2019.26631804896
    [Google Scholar]
  62. GhiselliR. GiacomettiA. CirioniO. OrlandoF. MocchegianiF. PacciA.M. ScaliseG. SabaV. Therapeutic efficacy of the polymyxin-like peptide ranalexin in an experimental model of endotoxemia.J. Surg. Res.2001100218318810.1006/jsre.2001.623511592790
    [Google Scholar]
  63. SimmacoM. MignognaG. BarraD. BossaF. Antimicrobial peptides from skin secretion of Rana esculenta. Molecular cloning of cDNAs encoding esculentin and brevinins and isolation of new active peptides.J. Biol. Chem.1994269119561196110.1016/S0021‑9258(17)32666‑2
    [Google Scholar]
  64. MorikawaN. HagiwaraK. NakajimaT. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa.Biochem. Biophys. Res. Commun.1992189118419010.1016/0006‑291X(92)91542‑X1449472
    [Google Scholar]
  65. ConlonJ.M. KolodziejekJ. NowotnyN. Antimicrobial peptides from ranid frogs: Taxonomic and phylogenetic markers and a potential source of new therapeutic agents.Biochim. Biophys. Acta. Proteins Proteomics20041696111410.1016/j.bbapap.2003.09.00414726199
    [Google Scholar]
  66. ConlonJ.M. PowerG.J. Abdel-WahabY.H. FlattP.R. JianshengH. CoquetL. LeprinceJ. JouenneT. VaudryH. A potent, non-toxic insulin-releasing peptide isolated from an extract of the skin of the Asian frog, Hylarana guntheri (Anura: Ranidae).Regul. Pept.200815115315910.1016/j.regpep.2008.04.002
    [Google Scholar]
  67. van der MeijdenB. RobinsonJ.A. Synthesis of a polymyxin derivative for photolabeling studies in the gram-negative bacterium Escherichia coli.J. Pept. Sci.201521323123510.1002/psc.273625640745
    [Google Scholar]
  68. CalhounD.M. WoodhamsD. HowardC. LaFonteB.E. GregoryJ.R. JohnsonP.T.J. Role of antimicrobial peptides in amphibian defense against trematode infection.EcoHealth201613238339110.1007/s10393‑016‑1102‑326911920
    [Google Scholar]
  69. LequinO. LadramA. ChabbertL. BrustonF. ConvertO. VanhoyeD. ChassaingG. NicolasP. AmicheM. Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini.Biochemistry200645246848010.1021/bi051711i16401077
    [Google Scholar]
  70. ChenT. TangL. ShawC. Identification of three novel Phyllomedusa sauvagei dermaseptins (sVI–sVIII) by cloning from a skin secretion-derived cDNA library.Regul. Pept.20031161-313914610.1016/j.regpep.2003.08.00114599725
    [Google Scholar]
  71. LorinC. SaidiH. BelaidA. ZairiA. BaleuxF. HociniH. BélecL. HaniK. TangyF. The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro.Virology2005334226427510.1016/j.virol.2005.02.00215780876
    [Google Scholar]
  72. HorikawaR. ParkerD.S. HerringP.L. PisanoJ.J. Pipinins: New mast cell degranulating peptides from Rana pipiens.Fed. Proc.198544695
    [Google Scholar]
  73. SimmacoM. MignognaG. BarraD. BossaF. Novel antimicrobial peptides from skin secretion of the European frog Rana esculenta.FEBS Lett.1993324215916110.1016/0014‑5793(93)81384‑C8508915
    [Google Scholar]
  74. VanhoyeD. BrustonF. NicolasP. AmicheM. Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain.Eur. J. Biochem.200327092068208110.1046/j.1432‑1033.2003.03584.x12709067
    [Google Scholar]
  75. LiJ. XuX. XuC. ZhouW. ZhangK. YuH. ZhangY. ZhengY. ReesH.H. LaiR. YangD. WuJ. Anti-infection peptidomics of amphibian skin.Mol. Cell. Proteomics20076588289410.1074/mcp.M600334‑MCP20017272268
    [Google Scholar]
  76. ErspamerV. The opioid peptides of the amphibian skin.Int. J. Dev. Neurosci.199210133010.1016/0736‑5748(92)90003‑I1609619
    [Google Scholar]
  77. MorA. DelfourA. Migliore-SamourD. NicolasP. NicolasP. Nguyen Van Huong Isolation, amino acid sequence and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin.Biochemistry199130368824883010.1021/bi00100a0141909573
    [Google Scholar]
  78. MorA. NicolasP. Isolation and structure of novel defensive peptides from frog skin.Eur. J. Biochem.19942191-214515410.1111/j.1432‑1033.1994.tb19924.x8306981
    [Google Scholar]
  79. CsordasA. MichlH. Isolation and structure of a haemolytic polypeptide from the defensive secretion of European Bombinu species.Monatsh. Chem.197010118218910.1007/BF00907538
    [Google Scholar]
  80. ConlonJ.M. SonnevendA. Clinical applications of Amphibian antimicrobial peptides.Hamdan Med. J.2011426272
    [Google Scholar]
  81. LiM. XiX. MaC. ChenX. ZhouM. BurrowsJ.F. ChenT. WangL. A novel dermaseptin isolated from the skin secretion of Phyllomedusa tarsius and its cationicity-enhanced analogue exhibiting effective antimicrobial and anti-proliferative activities.Biomolecules201991062810.3390/biom910062831635388
    [Google Scholar]
  82. MadiganM.T. MartinkoJ.M. ParkerJ. Brock Biology of Microorganisms.Upper Saddle River, NJPrentice Hall199711
    [Google Scholar]
  83. CalderónR.O. DeVriesG.H. Lipid composition and phospholipid asymmetry of membranes from a Schwann cell line.J. Neurosci. Res.199749337238010.1002/(SICI)1097‑4547(19970801)49:3<372::AID‑JNR12>3.0.CO;2‑19260748
    [Google Scholar]
  84. SimmacoM. MignognaG. BarraD. Antimicrobial peptides from amphibian skin: What do they tell us?Biopolymers199847643545010.1002/(SICI)1097‑0282(1998)47:6<435::AID‑BIP3>3.0.CO;2‑810333736
    [Google Scholar]
  85. ZhangL. RozekA. HancockR.E.W. Interaction of cationic antimicrobial peptides with model membranes.J. Biol. Chem.200127638357143572210.1074/jbc.M10492520011473117
    [Google Scholar]
  86. BolintineanuD.S. KaznessisY.N. Computational studies of protegrin antimicrobial peptides: A review.Peptides201132118820110.1016/j.peptides.2010.10.00620946928
    [Google Scholar]
  87. WangG. ZietzC.M. MudgapalliA. WangS. WangZ. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features.Protein Sci.20223119210610.1002/pro.418534529321
    [Google Scholar]
  88. WiedemannI. BenzR. SahlH.G. Lipid II-mediated pore formation by the peptide antibiotic nisin: A black lipid membrane study.J. Bacteriol.2004186103259326110.1128/JB.186.10.3259‑3261.200415126490
    [Google Scholar]
  89. de LeeuwE. LiC. ZengP. LiC. BuinM.D. LuW.Y. BreukinkE. LuW. Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II.FEBS Lett.201058481543154810.1016/j.febslet.2010.03.00420214904
    [Google Scholar]
  90. GagnonM.G. RoyR.N. LomakinI.B. FlorinT. MankinA.S. SteitzT.A. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition.Nucleic Acids Res.20164452439245010.1093/nar/gkw01826809677
    [Google Scholar]
  91. NicolasP. VanhoyeD. AmicheM. Molecular strategies in biological evolution of antimicrobial peptides.Peptides200324111669168010.1016/j.peptides.2003.08.01715019198
    [Google Scholar]
  92. DuellmanW. TruebL. Biology of Amphibians.LondonJohn Hopkins University Press199410.56021/9780801847806
    [Google Scholar]
  93. PethiyagodaR. Manamendra-ArachchiK. Evaluating Sri Lanka’s amphibian diversity. Occas. Pap. Wildlife Herit. Trust.199821-12
    [Google Scholar]
  94. PukalaT.L. BowieJ.H. MaselliV.M. MusgraveI.F. TylerM.J. Host-defence peptides from the glandular secretions of amphibians: Structure and activity.Nat. Prod. Rep.200623336839310.1039/b512118n16741585
    [Google Scholar]
  95. NicolasP. El AmriC. The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides.Biochim. Biophys. Acta Biomembr.2009178881537155010.1016/j.bbamem.2008.09.00618929530
    [Google Scholar]
  96. ConticelloS.G. GiladY. AvidanN. Ben-AsherE. LevyZ. FainzilberM. Mechanisms for evolving hypervariability: The case of conopeptides.Mol. Biol. Evol.200118212013110.1093/oxfordjournals.molbev.a00378611158371
    [Google Scholar]
  97. PiersmaT. Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?Oikos199780362363110.2307/3546640
    [Google Scholar]
  98. LinH.H. RowlandsD.T., Jr. Thermal regulation of the immune response in South American toads (Bufo marinus).Immunology19732411291334631060
    [Google Scholar]
  99. MatutteB. StoreyK.B. KnoopF.C. ConlonJ.M. Induction of synthesis of an antimicrobial peptide in the skin of the freeze-tolerant frog, Rana sylvatica, in response to environmental stimuli.FEBS Lett.20004832-313513810.1016/S0014‑5793(00)02102‑511042268
    [Google Scholar]
  100. BilusichD. JackwayR.J. MusgraveI.F. TylerM.J. BowieJ.H. The host-defence skin peptide profiles of Peron’s Tree Frog Litoria peronii in winter and summer. Sequence determination by electrospray mass spectrometry and activities of the peptides.Rapid Commun. Mass Spectrom.200923172628263610.1002/rcm.416419642086
    [Google Scholar]
  101. WoodhamsD.C. The ecology of chytridiomycosis, an emerging infectious disease of Australian rainforest frogs.Ph.D. thesis. James Cook University, Townsville, Australia2003
    [Google Scholar]
  102. TenoverF.C. Mechanisms of antimicrobial resistance in bacteria.Am. J. Med.20061196Suppl. 1S3S1010.1016/j.amjmed.2006.03.01116735149
    [Google Scholar]
  103. PenesyanA. GillingsM. PaulsenI. Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities.Molecules20152045286529810.3390/molecules2004528625812150
    [Google Scholar]
  104. FairR.J. TorY. Antibiotics and bacterial resistance in the 21st century.Perspect. Medicin. Chem.20146PMC.S1445910.4137/PMC.S1445925232278
    [Google Scholar]
  105. MurrayC.J.L. IkutaK.S. ShararaF. SwetschinskiL. Robles AguilarG. GrayA. HanC. BisignanoC. RaoP. WoolE. JohnsonS.C. BrowneA.J. ChipetaM.G. FellF. HackettS. Haines-WoodhouseG. Kashef HamadaniB.H. KumaranE.A.P. McManigalB. AchalapongS. AgarwalR. AkechS. AlbertsonS. AmuasiJ. AndrewsJ. AravkinA. AshleyE. BabinF-X. BaileyF. BakerS. BasnyatB. BekkerA. BenderR. BerkleyJ.A. BethouA. BielickiJ. BoonkasidechaS. BukosiaJ. CarvalheiroC. Castañeda-OrjuelaC. ChansamouthV. ChaurasiaS. ChiurchiùS. ChowdhuryF. Clotaire DonatienR. CookA.J. CooperB. CresseyT.R. Criollo-MoraE. CunninghamM. DarboeS. DayN.P.J. De LucaM. DokovaK. DramowskiA. DunachieS.J. Duong BichT. EckmannsT. EibachD. EmamiA. FeaseyN. Fisher-PearsonN. ForrestK. GarciaC. GarrettD. GastmeierP. GirefA.Z. GreerR.C. GuptaV. HallerS. HaselbeckA. HayS.I. HolmM. HopkinsS. HsiaY. IregbuK.C. JacobsJ. JarovskyD. JavanmardiF. JenneyA.W.J. KhoranaM. KhusuwanS. KissoonN. KobeissiE. KostyanevT. KrappF. KrumkampR. KumarA. KyuH.H. LimC. LimK. LimmathurotsakulD. LoftusM.J. LunnM. MaJ. ManoharanA. MarksF. MayJ. MayxayM. MturiN. Munera-HuertasT. MusichaP. MusilaL.A. Mussi-PinhataM.M. NaiduR.N. NakamuraT. NanavatiR. NangiaS. NewtonP. NgounC. NovotneyA. NwakanmaD. ObieroC.W. OchoaT.J. Olivas-MartinezA. OlliaroP. OokoE. Ortiz-BrizuelaE. OunchanumP. PakG.D. ParedesJ.L. PelegA.Y. PerroneC. PheT. PhommasoneK. PlakkalN. Ponce-de-LeonA. RaadM. RamdinT. RattanavongS. RiddellA. RobertsT. RobothamJ.V. RocaA. RosenthalV.D. RuddK.E. RussellN. SaderH.S. SaengchanW. SchnallJ. ScottJ.A.G. SeekaewS. SharlandM. ShivamallappaM. Sifuentes-OsornioJ. SimpsonA.J. SteenkesteN. StewardsonA.J. StoevaT. TasakN. ThaiprakongA. ThwaitesG. TigoiC. TurnerC. TurnerP. van DoornH.R. VelaphiS. VongpradithA. VongsouvathM. VuH. WalshT. WalsonJ.L. WanerS. WangrangsimakulT. WannapinijP. WozniakT. Young SharmaT.E.M.W. YuK.C. ZhengP. SartoriusB. LopezA.D. StergachisA. MooreC. DolecekC. NaghaviM. Antimicrobial Resistance Collaborators Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet20223991032562965510.1016/S0140‑6736(21)02724‑035065702
    [Google Scholar]
  106. de KrakerM.E.A. StewardsonA.J. HarbarthS. Will 10 million people die a year due to antimicrobial resistance by 2050?PLoS Med.20161311e100218410.1371/journal.pmed.100218427898664
    [Google Scholar]
  107. StevensonC. Advances in peptide pharmaceuticals.Curr. Pharm. Biotechnol.200910112213710.2174/13892010978704863419149594
    [Google Scholar]
  108. ZavasckiA.P. GoldaniL.Z. LiJ. NationR.L. Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review.J. Antimicrob. Chemother.20076061206121510.1093/jac/dkm35717878146
    [Google Scholar]
  109. DijksteelG.S. UlrichM.M.W. MiddelkoopE. BoekemaB.K.H.L. Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs).Front. Microbiol.20211261697910.3389/fmicb.2021.61697933692766
    [Google Scholar]
  110. MehtaK. SharmaP. MujawarS. VyasA. Role of antimicrobial peptides in treatment and prevention of Mycobacterium Tuberculosis: A review.Int. J. Pept. Res. Ther.202228513210.1007/s10989‑022‑10435‑935891800
    [Google Scholar]
  111. van der VeldenW.J.F.M. van IerselT.M.P. BlijlevensN.M.A. DonnellyJ.P. Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11).BMC Med.2009714410.1186/1741‑7015‑7‑4419735580
    [Google Scholar]
  112. EndermannR. VenteA. LabischinskiH. Friulimicin B, a cyclic lipopeptide, exhibits potent efficacy in a murine pneumococcal pneumonia model.47th Interscience Conference on Antimicrobial Agents and ChemotherapyChicago. 2007.
    [Google Scholar]
  113. WeckeT. ZühlkeD. MäderU. JordanS. VoigtB. PelzerS. LabischinskiH. HomuthG. HeckerM. MascherT. Daptomycin versus Friulimicin B: In-depth profiling of Bacillus subtilis cell envelope stress responses.Antimicrob. Agents Chemother.20095341619162310.1128/AAC.01046‑0819164157
    [Google Scholar]
  114. SrinivasN. JetterP. UeberbacherB.J. WerneburgM. ZerbeK. SteinmannJ. Van der MeijdenB. BernardiniF. LedererA. DiasR.L.A. MissonP.E. HenzeH. ZumbrunnJ. GombertF.O. ObrechtD. HunzikerP. SchauerS. ZieglerU. KächA. EberlL. RiedelK. DeMarcoS.J. RobinsonJ.A. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa.Science201032759681010101310.1126/science.118274920167788
    [Google Scholar]
  115. Martin-LoechesI. DaleG.E. TorresA. Murepavadin: A new antibiotic class in the pipeline.Expert Rev. Anti Infect. Ther.201816425926810.1080/14787210.2018.144102429451043
    [Google Scholar]
  116. BioSpace. Polyphor temporarily halts enrollment in the phase III studies of murepavadin for the treatment of patients with Nosocomial Pneumonia.2019
    [Google Scholar]
  117. GuinanE.C. BarbonC.M. KalishL.A. ParmarK. KutokJ. MancusoC.J. Stoler-BarakL. SuterE.E. RussellJ.D. PalmerC.D. GallingtonL.C. VoskertchianA. VergilioJ.A. ColeG. ZhuK. D’AndreaA. SoifferR. WeissJ.P. LevyO. Bactericidal/permeability-increasing protein (rBPI21) and fluoroquinolone mitigate radiation-induced bone marrow aplasia and death.Sci. Transl. Med.20113110110ra11810.1126/scitranslmed.300312622116933
    [Google Scholar]
  118. GiroirB.P. ScannonP.J. LevinM. Bactericidal/permeability-increasing protein—Lessons learned from the phase III, randomized, clinical trial of rBPI21 for adjunctive treatment of children with severe meningococcemia.Crit. Care Med.2001297Suppl.S130S13510.1097/00003246‑200107001‑0003911445748
    [Google Scholar]
/content/journals/ppl/10.2174/0109298665356946241218103145
Loading
/content/journals/ppl/10.2174/0109298665356946241218103145
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test