Skip to content
2000
image of Vitiligo Treatment with Natural Bioactive: A Narrative Review

Abstract

The lack of melanin-producing cells in the epidermis causes white patches to develop in vitiligo, a chronic skin disorder. Although vitiligo seldom causes physical injury, it can have serious psychological and social consequences, such as diminished self-confidence and feelings of inadequacy. While there is no known cure for vitiligo, there are several treatments that can help control the illness and lessen its impact on people's lives. In this review, we take a look at the literature on phytoconstituents and plant extracts as prospective therapeutic agents for vitiligo. Traditional medicine has a long history of using plant extracts for the treatment of many ailments, including skin diseases. The pharmacological effects of natural bioactive substances are diverse, including antioxidant, anti-inflammatory, and immunomodulatory capabilities. For this reason, they hold great promise as a vitiligo cure.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155337960241205070806
2025-01-15
2025-09-05
Loading full text...

Full text loading...

References

  1. Singh S. Chaudhary A. Patel M. Current debates on etiopathogenesis and treatment strategies for vitiligo. Curr. Drug Targets 2022 23 13 1219 1238 10.2174/1389450123666220406125645 35388753
    [Google Scholar]
  2. Ning X. Zhang Y. Wang W. Yan H. The association between social support and depression among patients with vitiligo in China. Front. Psychol. 2022 13 939845 10.3389/fpsyg.2022.939845 36081711
    [Google Scholar]
  3. Akl J Lee S Ju HJ Parisi R Kim JY Jeon JJ Heo YW Eleftheriadou V Hamzavi I Griffiths CEM Ashcroft DM Mysore V Gupta S Parsad D Lim H Bae JM Ezzedine K Estimating the burden of vitiligo: A systematic review and modelling study. Lancet Public Health 2024 9 6 S2468 S2667 10.1016/S2468‑2667(24)00026‑4
    [Google Scholar]
  4. Miteva M. Villasante A. Epidemiology and burden of alopecia areata: A systematic review. Clin. Cosmet. Investig. Dermatol. 2015 8 397 403 10.2147/CCID.S53985 26244028
    [Google Scholar]
  5. Giri P. Desai D. Dwivedi M. Animal models unraveling the complexity of vitiligo pathogenesis. Autoimmun. Rev. 2024 23 4 103515 Epub ahead of print 10.1016/j.autrev.2024.103515 38185189
    [Google Scholar]
  6. Bergqvist C. Ezzedine K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J. Dermatol. 2021 48 3 252 270 10.1111/1346‑8138.15743 33404102
    [Google Scholar]
  7. de Baat C Medicaments and oral healthcare. Hyperpigmentation of oral soft tissues due to afamelanotide. Ned. Tijdschr. Tandheelkd. 2020 127 237 243 10.5177/ntvt.2020.04.19115
    [Google Scholar]
  8. Bishnoi A. Parsad D. Phototherapy for vitiligo: A narrative review on the clinical and molecular aspects, and recent literature. Photodermatol. Photoimmunol. Photomed. 2024 40 3 e12968 10.1111/phpp.12968 38632705
    [Google Scholar]
  9. Razmi T M Parsad D. Recent advances in pathogenesis and medical management of vitiligo. Pigmentary Skin Disorders Springer Cham 2018 10.1007/978‑3‑319‑70419‑7_8
    [Google Scholar]
  10. Oh S.H. Hann S-K. Classification and Clinical Features of Vitiligo. Vitiligo 2018 33 47 10.1002/9781118937303.ch6
    [Google Scholar]
  11. Iwanowski T. Szlązak P. Zabłotna M. Olszewska B. Sokołowska-Wojdyło M. Translation, cross-cultural adaptation and validation of the vitiligo-specific health-related quality of life instrument (VitiQoL) into Polish. Postepy Dermatol. Alergol. 2021 38 4 636 643 10.5114/ada.2021.108896 34658707
    [Google Scholar]
  12. Marchioro H.Z. Silva de Castro C.C. Fava V.M. Sakiyama P.H. Dellatorre G. Miot H.A. Update on the pathogenesis of vitiligo. An. Bras. Dermatol. 2022 97 4 478 490 10.1016/j.abd.2021.09.008 35643735
    [Google Scholar]
  13. Singh S. Singh U. Pandey S.S. Serum concentration of IL-6, IL-2, TNF-α, and IFNγ in Vitiligo patients. Indian J. Dermatol. 2012 57 1 12 14 10.4103/0019‑5154.92668 22470201
    [Google Scholar]
  14. Abdelmaksoud A. Methotrexate for treatment of vitiligo. Dermatol. Ther. 2017 30 6 e12532 10.1111/dth.12532 28796400
    [Google Scholar]
  15. K AL-smadi Vitiligo: A review of aetiology, pathogenesis, treatment, and psychosocial impact. Cosmetics 2023 10 3 84 10.3390/cosmetics10030084
    [Google Scholar]
  16. Natarelli N Nong Y Maloh J Sivamani R. Topical integrative approaches to vitiligo: A systematic review. J. Integr. Dermatol. 2023
    [Google Scholar]
  17. Pang Y. Wu S. He Y. Nian Q. Lei J. Yao Y. Guo J. Zeng J. Plant-derived compounds as promising therapeutics for vitiligo. Front. Pharmacol. 2021 12 685116 10.3389/fphar.2021.685116 34858164
    [Google Scholar]
  18. Shin S.W. Jung E. Kim S. Kim J.H. Kim E.G. Lee J. Park D. Antagonizing effects and mechanisms of afzelin against UVB-induced cell damage. PLoS One 2013 8 4 e61971 10.1371/journal.pone.0061971 23626759
    [Google Scholar]
  19. Jung E. Kim J.H. Kim M.O. Jang S. Kang M. Oh S.W. Nho Y.H. Kang S.H. Kim M.H. Park S.H. Lee J. Afzelin positively regulates melanogenesis through the p38 MAPK pathway. Chem. Biol. Interact. 2016 254 167 172 10.1016/j.cbi.2016.06.010 27287415
    [Google Scholar]
  20. Jung E. Kim J.H. Kim M.O. Lee S.Y. Lee J. Melanocyte‐protective effect of afzelin is mediated by the Nrf2‐ ARE signalling pathway via GSK ‐3β inactivation. Exp. Dermatol. 2017 26 9 764 770 10.1111/exd.13277 27992083
    [Google Scholar]
  21. Liu R. Ji P. Liu B. Qiao H. Wang X. Zhou L. Deng T. Ba Y. Apigenin enhances the cisplatin cytotoxic effect through p53-modulated apoptosis. Oncol. Lett. 2017 13 2 1024 1030 10.3892/ol.2016.5495 28356995
    [Google Scholar]
  22. Han Y. Zhang T. Su J. Zhao Y. Chenchen Wang Li X. Apigenin attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage. J. Clin. Neurosci. 2017 40 157 162 10.1016/j.jocn.2017.03.003 28342702
    [Google Scholar]
  23. Baek J. Lee M.G. Oxidative stress and antioxidant strategies in dermatology. Redox Rep. 2016 21 4 164 169 10.1179/1351000215Y.0000000015 26020527
    [Google Scholar]
  24. Panieri E. Telkoparan-Akillilar P. Saso L. NRF2, a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer. Biofactors 2023 49 2 228 250 10.1002/biof.1912 36310374
    [Google Scholar]
  25. Zhang B. Wang J. Zhao G. Lin M. Lang Y. Zhang D. Feng D. Tu C. Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway. Cell Stress Chaperones 2020 25 2 277 285 10.1007/s12192‑020‑01071‑7 31953635
    [Google Scholar]
  26. Lin M. Lu S. Wang A. Qi X. Zhao D. Wang Z. Man M.Q. Tu C. Apigenin attenuates dopamine-induced apoptosis in melanocytes via oxidative stress-related p38, c-Jun NH2-terminal kinase and Akt signaling. J. Dermatol. Sci. 2011 63 1 10 16 10.1016/j.jdermsci.2011.03.007 21514118
    [Google Scholar]
  27. Takekoshi S. Nagata H. Kitatani K. Flavonoids enhance melanogenesis in human melanoma cells. Tokai J. Exp. Clin. Med. 2014 39 3 116 121 25248426
    [Google Scholar]
  28. Shukla S Gupta S. Apigenin: A promising molecule for cancer prevention Pharm Res 2010 27 6 962 978 10.1007/s11095‑010‑0089‑7
    [Google Scholar]
  29. Kim J.K. Kim Y.S. Kim Y. Uddin M.R. Kim Y.B. Kim H.H. Park S.Y. Lee M.Y. Chung S.O. Park S.U. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora. World J. Microbiol. Biotechnol. 2014 30 3 887 892 10.1007/s11274‑013‑1498‑7 24162949
    [Google Scholar]
  30. Choi E.O. Jeong J.W. Park C. Hong S.H. Kim G.Y. Hwang H.J. Cho E.J. Choi Y.H. Baicalein protects C6 glial cells against hydrogen peroxide-induced oxidative stress and apoptosis through regulation of the Nrf2 signaling pathway. Int. J. Mol. Med. 2016 37 3 798 806 10.3892/ijmm.2016.2460 26796879
    [Google Scholar]
  31. Zhao W.Z. Wang H.T. Huang H.J. Lo Y.L. Lin A.M.Y. Neuroprotective effects of baicalein on acrolein-induced neurotoxicity in the nigrostriatal dopaminergic system of rat brain. Mol. Neurobiol. 2018 55 1 130 137 10.1007/s12035‑017‑0725‑x 28866823
    [Google Scholar]
  32. Ma J. Li S. Zhu L. Guo S. Yi X. Cui T. He Y. Chang Y. Liu B. Li C. Jian Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic. Biol. Med. 2018 129 492 503 10.1016/j.freeradbiomed.2018.10.421 30342186
    [Google Scholar]
  33. Vaccaro M. Irrera N. Cutroneo G. Rizzo G. Vaccaro F. Anastasi G. Borgia F. Cannavò S. Altavilla D. Squadrito F. Differential expression of nitric oxide synthase isoforms nNOS and iNOS in patients with non-segmental generalized vitiligo. Int. J. Mol. Sci. 2017 18 12 2533 10.3390/ijms18122533 29186858
    [Google Scholar]
  34. Liu B. Jian Z. Li Q. Li K. Wang Z. Liu L. Tang L. Yi X. Wang H. Li C. Gao T. Baicalein protects human melanocytes from H2O2-induced apoptosis via inhibiting mitochondria-dependent caspase activation and the p38 MAPK pathway. Free Radic. Biol. Med. 2012 53 2 183 193 10.1016/j.freeradbiomed.2012.04.015 22569306
    [Google Scholar]
  35. Wu J. Zhou M. Wan Y. Xu A. CD8+ T cells from vitiligo perilesional margins induce autologous melanocyte apoptosis. Mol. Med. Rep. 2013 7 1 237 241 10.3892/mmr.2012.1117 23042234
    [Google Scholar]
  36. Zhu Y. Zhong L. Peng J. Yuan Q. Xu A. The therapeutic effects of baicalin on vitiligo mice. Biol. Pharm. Bull. 2019 42 9 1450 1455 10.1248/bpb.b19‑00319 31217369
    [Google Scholar]
  37. Iuvone T. Esposito G. De Filippis D. Scuderi C. Steardo L. Cannabidiol: A promising drug for neurodegenerative disorders? CNS Neurosci. Ther. 2009 15 1 65 75 10.1111/j.1755‑5949.2008.00065.x 19228180
    [Google Scholar]
  38. Baswan S.M. Klosner A.E. Glynn K. Rajgopal A. Malik K. Yim S. Stern N. Therapeutic potential of cannabidiol (CBD) for skin health and disorders. Clin. Cosmet. Investig. Dermatol. 2020 13 927 942 10.2147/CCID.S286411 33335413
    [Google Scholar]
  39. Hwang Y.S. Kim Y.J. Kim M.O. Kang M. Oh S.W. Nho Y.H. Park S.H. Lee J. Cannabidiol upregulates melanogenesis through CB1 dependent pathway by activating p38 MAPK and p42/44 MAPK. Chem. Biol. Interact. 2017 273 107 114 10.1016/j.cbi.2017.06.005 28601556
    [Google Scholar]
  40. Atalay S. Jarocka-Karpowicz I. Skrzydlewska E. Antioxidative and anti-inflammatory properties of cannabidiol. Antioxidants 2019 9 1 21 10.3390/antiox9010021 31881765
    [Google Scholar]
  41. Szabó I.L. Lisztes E. Béke G. Tóth K.F. Paus R. Oláh A. Bíró T. The phytocannabinoid (–)-cannabidiol operates as a complex, differential modulator of human hair growth: Anti-inflammatory submicromolar versus hair growth inhibitory micromolar effects. J. Invest. Dermatol. 2020 140 2 484 488.e5 10.1016/j.jid.2019.07.690 31369737
    [Google Scholar]
  42. Jastrząb A. Jarocka-Karpowicz I. Markowska A. Wroński A. Gęgotek A. Skrzydlewska E. Antioxidant and anti‐inflammatory effect of cannabidiol contributes to the decreased lipid peroxidation of keratinocytes of rat skin exposed to UV radiation. Oxid. Med. Cell. Longev. 2021 2021 1 6647222 10.1155/2021/6647222
    [Google Scholar]
  43. Biernacki M. Brzóska M.M. Markowska A. Gałażyn-Sidorczuk M. Cylwik B. Gęgotek A. Skrzydlewska E. Oxidative stress and its consequences in the blood of rats irradiated with UV: Protective effect of cannabidiol. Antioxidants 2021 10 6 821 10.3390/antiox10060821 34063802
    [Google Scholar]
  44. Paudel K.S. Hammell D.C. Agu R.U. Valiveti S. Stinchcomb A.L. Cannabidiol bioavailability after nasal and transdermal application: Effect of permeation enhancers. Drug Dev Ind Pharm 2010 36 9 1088 1097 10.3109/03639041003657295
    [Google Scholar]
  45. Huang K. Li C. Gao F. Fan Y. Zeng F. Meng L. Li L. Zhang S. Wei H. Epigallocatechin-3-gallate promotes the in vitro maturation and embryo development following IVF of porcine oocytes. Drug Des. Devel. Ther. 2021 15 1013 1020 10.2147/DDDT.S295936 33707939
    [Google Scholar]
  46. Zhu Y. Wang S. Lin F. Li Q. Xu A. The therapeutic effects of EGCG on vitiligo. Fitoterapia 2014 99 243 251 10.1016/j.fitote.2014.08.007 25128425
    [Google Scholar]
  47. Hu W. Zhang L. Lin F. Lei J. Zhou M. Xu A. Topical epigallocatechin‐3‐gallate in the treatment of vitiligo. Australas. J. Dermatol. 2021 62 3 e404 e407 10.1111/ajd.13612 34046892
    [Google Scholar]
  48. Katiyar S.K. Matsui M.S. Elmets C.A. Mukhtar H. Polyphenolic antioxidant (-)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin. Photochem. Photobiol. 1999 69 2 148 153 10.1562/0031‑8655(1999)069<0148:PAEGFG>2.3.CO;2 10048310
    [Google Scholar]
  49. Maouia A. Sormani L. Youssef M. Helal A.N. Kassab A. Passeron T. Differential expression of CXCL 9, CXCL 10, and IFN ‐ γ in vitiligo and alopecia areata patients. Pigment Cell Melanoma Res. 2017 30 2 259 261 10.1111/pcmr.12559 27863059
    [Google Scholar]
  50. Wang J. Li P. Qin T. Sun D. Zhao X. Zhang B. Protective effect of epigallocatechin‐3‐gallate against neuroinflammation and anxiety‐like behavior in a rat model of myocardial infarction. Brain Behav. 2020 10 6 e01633 10.1002/brb3.1633 32304289
    [Google Scholar]
  51. Ning W. Wang S. Dong X. Liu D. Fu L. Jin R. Xu A. Epigallocatechin-3-gallate (EGCG) suppresses the trafficking of lymphocytes to epidermal melanocytes via inhibition of JAK2: Its implication for vitiligo treatment. Biol. Pharm. Bull. 2015 38 11 1700 1706 10.1248/bpb.b15‑00331 26345342
    [Google Scholar]
  52. Ning W. Wang S. Liu D. Fu L. Jin R. Xu A. Potent effects of peracetylated (-)-epigallocatechin-3-gallate against hydrogen peroxide-induced damage in human epidermal melanocytes via attenuation of oxidative stress and apoptosis. Clin. Exp. Dermatol. 2016 41 6 616 624 10.1111/ced.12855 27339454
    [Google Scholar]
  53. Khan H. Marya Amin S. Kamal M.A. Patel S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018 101 860 870 10.1016/j.biopha.2018.03.007 29635895
    [Google Scholar]
  54. Imran M. Saeed F. Gilani S.A. Shariati M.A. Imran A. Afzaal M. Atif M. Tufail T. Anjum F.M. Fisetin: An anticancer perspective. Food Sci. Nutr. 2021 9 1 3 16 10.1002/fsn3.1872 33473265
    [Google Scholar]
  55. Grynkiewicz G. Demchuk O.M. New Perspectives for Fisetin. Front Chem. 2019 7 697 10.3389/fchem.2019.00697 31750288
    [Google Scholar]
  56. Molagoda I.M.N. Karunarathne W.A.H.M. Park S.R. Choi Y.H. Park E.K. Jin C.Y. Yu H. Jo W.S. Lee K.T. Kim G.Y. GSK-3β-targeting fisetin promotes melanogenesis in B16F10 melanoma cells and zebrafish larvae through β-catenin activation. Int. J. Mol. Sci. 2020 21 1 312 10.3390/ijms21010312 31906440
    [Google Scholar]
  57. Yang CC Lin CC Hsiao L Der Yang CM Galangin inhibits thrombin-induced MMP-9 expression in SK-N-SH cells via protein kinase-dependent NF-κB phosphorylation. Int J Mol Sci 2018 19 12 4084 10.3390/ijms19124084
    [Google Scholar]
  58. Skiba M.A. Szendzielorz K. Mazur B. Król W. The inhibitory effect of flavonoids on interleukin-8 release by human gastric adenocarcinoma (AGS) cells infected with cag PAI (+) Helicobacter pylori. Cent. Eur. J. Immunol. 2016 3 3 229 235 10.5114/ceji.2016.63119 27833438
    [Google Scholar]
  59. Ma Y.L. Zhao F. Yin J.T. Liang C.J. Niu X.L. Qiu Z.H. Zhang L.T. Two approaches for evaluating the effects of galangin on the activities and mRNA expression of seven CYP450. Molecules 2019 24 6 1171 10.3390/molecules24061171 30934565
    [Google Scholar]
  60. Cushnie T.P.T. Hamilton V.E.S. Chapman D.G. Taylor P.W. Lamb A.J. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J. Appl. Microbiol. 2007 103 5 1562 1567 10.1111/j.1365‑2672.2007.03393.x 17953567
    [Google Scholar]
  61. Sinha R. Srivastava S. Joshi A. Joshi U.J. Govil G. In-vitro anti-proliferative and anti-oxidant activity of galangin, fisetin and quercetin: Role of localization and intermolecular interaction in model membrane. Eur. J. Med. Chem. 2014 79 102 109 10.1016/j.ejmech.2014.04.002 24727463
    [Google Scholar]
  62. Huo S.X. Liu X.M. Ge C.H. Gao L. Peng X.M. Zhao P.P. Yan M. The effects of galangin on a mouse model of vitiligo induced by hydroquinone. Phytother. Res. 2014 28 10 1533 1538 10.1002/ptr.5161 24820380
    [Google Scholar]
  63. Fang D. Xiong Z. Xu J. Yin J. Luo R. Chemopreventive mechanisms of galangin against hepatocellular carcinoma: A review. Biomed. Pharmacother. 2019 109 2054 2061 10.1016/j.biopha.2018.09.154 30551461
    [Google Scholar]
  64. Cai X. Wang X. Li J. Chen S. Protective effect of glycyrrhizin on myocardial ischemia/reperfusion injury-induced oxidative stress, inducible nitric oxide synthase and inflammatory reactions through high-mobility group box 1 and mitogen-activated protein kinase expression. Exp. Ther. Med. 2017 14 2 1219 1226 10.3892/etm.2017.4617 28810581
    [Google Scholar]
  65. Li M. Xiang L. Li Y. Efficacy and safety of compound glycyrrhizin in the patients with vitiligo: A systematic review and meta-analysis. Expert Rev. Clin. Pharmacol. 2023 16 6 601 611 10.1080/17512433.2023.2213887 37218470
    [Google Scholar]
  66. Allam M. Riad H. Concise review of recent studies in vitiligo. Qatar Med. J. 2014 2013 2 1 19 10.5339/qmj.2013.10 25003059
    [Google Scholar]
  67. Mou K.H. Han D. Liu W.L. Li P. Combination therapy of orally administered glycyrrhizin and UVB improved active-stage generalized vitiligo. Braz. J. Med. Biol. Res. 2016 49 8 e5354 10.1590/1414‑431x20165354 27464024
    [Google Scholar]
  68. Ali SA Parveen N Ali AS Promoting Melanocyte Regeneration Using Different Plants and Their Constituents. Bentham Science Publishers 2019 10.2174/9789811411205119030010
    [Google Scholar]
  69. Wang Q. Wei H.C. Zhou S.J. Li Y. Zheng T.T. Zhou C.Z. Wan X.H. Hyperoside: A review on its sources, biological activities, and molecular mechanisms. Phytother. Res. 2022 36 7 2779 2802 10.1002/ptr.7478 35561084
    [Google Scholar]
  70. Yang B. Yang Q. Yan H-B. Yang X. Lu Q-P. Hyperoside elevates the melanin content and promotes the migration of human melanocytes. Int. J. Clin. Exp. Med. 2017 10 2953 2959
    [Google Scholar]
  71. Yang B. Yang Q. Yang X. Yan H.B. Lu Q.P. Hyperoside protects human primary melanocytes against H2O2-induced oxidative damage. Mol. Med. Rep. 2016 13 6 4613 4619 10.3892/mmr.2016.5107 27082158
    [Google Scholar]
  72. Liu Z.Q. Yao G.L. Zhai J.M. Hu D.W. Fan Y.G. Kaempferol suppresses proliferation and induces apoptosis and DNA damage in human gallbladder cancer cells through the CDK4/CDK6/cyclin D1 pathway. Eur. Rev. Med. Pharmacol. Sci. 2021 25 3 1311 1321 10.26355/EURREV_202102_24836 33629301
    [Google Scholar]
  73. Calderon-Montano J M. A review on the dietary flavonoid Kaempferol. Mini Rev. Med. Chem. 2011 11 298 344 10.2174/138955711795305335
    [Google Scholar]
  74. Wang J.Y. Chen H. Wang Y.Y. Wang X.Q. Chen H.Y. Zhang M. Tang Y. Zhang B. Network pharmacological mechanisms of Vernonia anthelmintica (L.) in the treatment of vitiligo: Isorhamnetin induction of melanogenesis via up-regulation of melanin-biosynthetic genes. BMC Syst. Biol. 2017 11 1 103 10.1186/s12918‑017‑0486‑1 29145845
    [Google Scholar]
  75. Tang H. Yang L. Wu L. Wang H. Chen K. Wu H. Li Y. Kaempferol, the melanogenic component of Sanguisorba officinalis, enhances dendricity and melanosome maturation/transport in melanocytes. J. Pharmacol. Sci. 2021 147 4 348 357 10.1016/j.jphs.2021.08.009 34663517
    [Google Scholar]
  76. Gao W. Wang W. Peng Y. Deng Z. Antidepressive effects of kaempferol mediated by reduction of oxidative stress, proinflammatory cytokines and up-regulation of AKT/β-catenin cascade. Metab. Brain Dis. 2019 34 2 485 494 10.1007/s11011‑019‑0389‑5 30762138
    [Google Scholar]
  77. Xie Y. Mei X. Shi W. Kaempferol promotes melanogenesis and reduces oxidative stress in PIG1 normal human skin melanocytes. J. Cell. Mol. Med. 2023 27 7 982 990 10.1111/jcmm.17711 36924030
    [Google Scholar]
  78. Gianfaldoni S. Wollina U. Tirant M. Tchernev G. Lotti J. Satolli F. Rovesti M. França K. Lotti T. Herbal compounds for the treatment of vitiligo: A review. Open Access Maced. J. Med. Sci. 2018 6 1 203 207 10.3889/oamjms.2018.048 29484024
    [Google Scholar]
  79. Pereira J. Gonçalves R. Barreto M. Dias C. Carvalho F. Almeida A.J. Ribeiro H.M. Marto J. Development of gel-in-oil emulsions for khellin topical delivery. Pharmaceutics 2020 12 5 398 10.3390/pharmaceutics12050398 32357441
    [Google Scholar]
  80. Fenniche S. Zaouak A. Tanfous A.B. Jrad M. Hammami H. Successful treatment of refractory vitiligo with a combination of khellin and 308-nm excimer lamp: An open-label, 1-year prospective study. Dermatol. Ther. (Heidelb.) 2018 8 1 127 135 10.1007/s13555‑017‑0218‑x 29282672
    [Google Scholar]
  81. Abdelqader N. Makki M. Abdel-Aleem H. Monochromatic excimer light (308nm) versus monochromatic excimer light (308nm) and 4% khellin extract in treatment of vitiligo. Int. J. Med. Arts 2022 0 0 0 10.21608/ijma.2022.172771.1544
    [Google Scholar]
  82. Du Y. Luo M. Du Y. Xu M. Yao Q. Wang K. He G. Liquiritigenin decreases Aβ levels and ameliorates cognitive decline by regulating microglia M1/M2 transformation in AD mice. Neurotox. Res. 2021 39 2 349 358 10.1007/s12640‑020‑00284‑z 32990912
    [Google Scholar]
  83. Uto T Ohta T Yamashita A Fujii S Shoyama Y. Liquiritin and liquiritigenin induce melanogenesis via enhancement of p38 and PKA signaling pathways. Medicines 2019 6 2 68 10.3390/medicines6020068
    [Google Scholar]
  84. Zhou J. Chen F. Yan A. Xia X. Madecassoside protects retinal pigment epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis through the activation of Nrf2/HO-1 pathway. Biosci. Rep. 2020 40 10 BSR20194347 10.1042/BSR20194347 33000859
    [Google Scholar]
  85. Peng L.Y. Shi H.T. Yuan M. Li J.H. Song K. Huang J.N. Yi P-F. Shen H-Q. Fu B-D. Madecassoside protects against LPS-induced acute lung injury via inhibiting TLR4/NF-κB activation and blood-air barrier permeability. Front. Pharmacol. 2020 11 807 10.3389/fphar.2020.00807
    [Google Scholar]
  86. Wang Y. Li S. Li C. Perspectives of new advances in the pathogenesis of vitiligo: From oxidative stress to autoimmunity. Med. Sci. Monit. 2019 25 1017 1023 10.12659/MSM.914898 30723188
    [Google Scholar]
  87. Shen X. Guo M. Yu H. Liu D. Lu Z. Lu Y. Propionibacterium acnes related anti-inflammation and skin hydration activities of madecassoside, a pentacyclic triterpene saponin from Centella asiatica. Biosci. Biotechnol. Biochem. 2019 83 3 561 568 10.1080/09168451.2018.1547627 30452312
    [Google Scholar]
  88. Ling Y. Gong Q. Xiong X. Sun L. Zhao W. Zhu W. Lu Y. Protective effect of madecassoside on H2O2-induced oxidative stress and autophagy activation in human melanocytes. Oncotarget 2017 8 31 51066 51075 10.18632/oncotarget.17654 28881630
    [Google Scholar]
  89. Alves F.S. Cruz J.N. de Farias Ramos I.N. do Nascimento Brandão D.L. Queiroz R.N. da Silva G.V. da Silva G.V. Dolabela M.F. da Costa M.L. Khayat A.S. de Arimatéia Rodrigues do Rego J. do Socorro Barros Brasil D. Evaluation of antimicrobial activity and cytotoxicity effects of extracts of piper nigrum L. and piperine. Separations 2022 10 1 21 10.3390/separations10010021
    [Google Scholar]
  90. Zahin M. Bokhari N.A. Ahmad I. Husain F.M. Althubiani A.S. Alruways M.W. Perveen K. Shalawi M. Antioxidant, antibacterial, and antimutagenic activity of Piper nigrum seeds extracts. Saudi J. Biol. Sci. 2021 28 9 5094 5105 10.1016/j.sjbs.2021.05.030 34466087
    [Google Scholar]
  91. Faas L. Venkatasamy R. Hider R.C. Young A.R. Soumyanath A. In vivo evaluation of piperine and synthetic analogues as potential treatments for vitiligo using a sparsely pigmented mouse model. Br. J. Dermatol. 2008 158 5 941 950 10.1111/j.1365‑2133.2008.08464.x 18284389
    [Google Scholar]
  92. Jeon H.J. Kim K. Kim Y.D. Lee S.E. Antimelanogenic activities of piperlongumine derived from Piper longum on murine B16F10 melanoma cells in vitro and zebrafish embryos in vivo: Its molecular mode of depigmenting action. Appl. Biol. Chem. 2019 62 1 61 10.1186/s13765‑019‑0468‑7
    [Google Scholar]
  93. Yadav S.S. Singh M.K. Hussain S. Dwivedi P. Khattri S. Singh K. Therapeutic spectrum of piperine for clinical practice: A scoping review. Crit. Rev. Food Sci. Nutr. 2023 63 22 5813 5840 10.1080/10408398.2021.2024792 34996326
    [Google Scholar]
  94. Mahmoud Abd El-Ghany El-Dyasty B. Ahmed Abd El-Rahman El-Khalawany M. Mohamed Abd El-Salam Abd El-Kareem I. Author C. Evaluation of the efficacy of topical piperine oil combined with excimer light phototherapy in the treatment of non-segmental vitiligo: Comparative intra individual study. Al-Azhar Med J(Medicine) 2021 50 1425 1432 10.21608/amj.2021.158624
    [Google Scholar]
  95. Tatu A.L. Mihaila B. Dinica R. Buzia O.D. Radaschin D.S. Nwabudike L.C. Piperine extract and white patches. Clinical Cases in Dermatology 2020 103–7 103 107 10.1007/978‑3‑030‑50823‑4_22
    [Google Scholar]
  96. Jaisin Y. Ratanachamnong P. Wongsawatkul O. Watthammawut A. Malaniyom K. Natewong S. Antioxidant and anti-inflammatory effects of piperine on UV-B-irradiated human HaCaT keratinocyte cells. Life Sci. 2020 263 118607 10.1016/j.lfs.2020.118607 33091445
    [Google Scholar]
  97. Alvarez-Arellano L Salazar-García M Corona JC Jazvinš´cak M Jembre J Šegota S Neuroprotective effects of quercetin in pediatric neurological diseases. Molecules 2020 25 23 5597 10.3390/molecules25235597
    [Google Scholar]
  98. Guan C. Xu W. Hong W. Zhou M. Lin F. Fu L. Liu D. Xu A. Quercetin attenuates the effects of H2O2 on endoplasmic reticulum morphology and tyrosinase export from the endoplasmic reticulum in melanocytes. Mol. Med. Rep. 2015 11 6 4285 4290 10.3892/mmr.2015.3242 25625855
    [Google Scholar]
  99. Liu-Smith F. Meyskens F.L. Molecular mechanisms of flavonoids in melanin synthesis and the potential for the prevention and treatment of melanoma. Mol. Nutr. Food Res. 2016 60 6 1264 1274 10.1002/mnfr.201500822 26865001
    [Google Scholar]
  100. Chen H. Lu C. Liu H. Wang M. Zhao H. Yan Y. Han L. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int. Immunopharmacol. 2017 48 110 117 10.1016/j.intimp.2017.04.022 28499194
    [Google Scholar]
  101. Zhang L. Pharmacokinetics and drug delivery systems for puerarin, a bioactive flavone from traditional Chinese medicine. Drug Deliv 2019 26 1 860 869 10.1080/10717544.2019.1660732
    [Google Scholar]
  102. Ding X. Mei E. Hu M. Zhou C. Li X. Cai L. Li Z. Effect of puerarin on melanogenesis in human melanocytes and vitiligo mouse models and the underlying mechanism. Phytother. Res. 2019 33 1 205 213 10.1002/ptr.6218 30421463
    [Google Scholar]
  103. Park W. Kwon O. Yoon T.J. Chung J.H. Anti-graying effect of the extract of Pueraria thunbergiana via upregulation of cAMP/MITF-M signaling pathway. J. Dermatol. Sci. 2014 75 2 153 155 10.1016/j.jdermsci.2014.05.003 24924521
    [Google Scholar]
  104. Zhou X.L. Wan X.M. Fu X.X. Xie C.G. Puerarin prevents cadmium-induced hepatic cell damage by suppressing apoptosis and restoring autophagic flux. Biomed. Pharmacother. 2019 115 108929 10.1016/j.biopha.2019.108929 31060001
    [Google Scholar]
  105. Xie X. Zhong H. Xu X. The mRNA expression levels of the Th22 specific transcription factor AHR in patients with vitiligo and its role in vitiligo disease progression. Int. J. Clin. Exp. Med. 2021 14 218 225
    [Google Scholar]
  106. He M. Min J.W. Kong W.L. He X.H. Li J.X. Peng B.W. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016 115 74 85 10.1016/j.fitote.2016.09.011 27693342
    [Google Scholar]
  107. Fahmy N.M. Al-Sayed E. Moghannem S. Azam F. El-Shazly M. Singab A.N. Breaking down the barriers to a natural antiviral agent: Antiviral activity and molecular docking of erythrina speciosa extract, fractions, and the major compound. Chem. Biodivers. 2020 17 2 e1900511 10.1002/cbdv.201900511 31800173
    [Google Scholar]
  108. Babaei F. Moafizad A. Darvishvand Z. Mirzababaei M. Hosseinzadeh H. Nassiri-Asl M. Review of the effects of vitexin in oxidative stress‐related diseases. Food Sci. Nutr. 2020 8 6 2569 2580 10.1002/fsn3.1567 32566174
    [Google Scholar]
  109. Das M.C. Sandhu P. Gupta P. Rudrapaul P. De U.C. Tribedi P. Akhter Y. Bhattacharjee S. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin. Sci. Rep. 2016 6 1 23347 10.1038/srep23347 27000525
    [Google Scholar]
  110. Li X.S. Tang X.Y. Su W. Li X. Vitexin protects melanocytes from oxidative stress via activating MAPK-Nrf2/ARE pathway. Immunopharmacol. Immunotoxicol. 2020 42 6 594 603 10.1080/08923973.2020.1835952 33045867
    [Google Scholar]
  111. Mamat N. Lu X. Kabas M. Aisa H. Potential anti-vitiligo properties of cynarine extracted from Vernonia anthelmintica (L.) Willd. Int. J. Mol. Med. 2018 42 5 2665 2675 10.3892/ijmm.2018.3861 30226537
    [Google Scholar]
  112. Mir-Palomo S. Nácher A. Ofelia Vila Busó M.A. Caddeo C. Manca M.L. Manconi M. Díez-Sales O. Baicalin and berberine ultradeformable vesicles as potential adjuvant in vitiligo therapy. Colloids Surf. B Biointerfaces 2019 175 654 662 10.1016/j.colsurfb.2018.12.055 30590326
    [Google Scholar]
  113. Jiang W. Li S. Chen X. Zhang W. Chang Y. He Y. Zhang S. Su X. Gao T. Li C. Jian Z. Berberine protects immortalized line of human melanocytes from H2O2-induced oxidative stress via activation of Nrf2 and Mitf signaling pathway. J. Dermatol. Sci. 2019 94 1 236 243 10.1016/j.jdermsci.2019.03.007 30987854
    [Google Scholar]
  114. Jabbarzadeh Kaboli P. Rahmat A. Ismail P. Ling K.H. Targets and mechanisms of berberine, a natural drug with potential to treat cancer with special focus on breast cancer. Eur. J. Pharmacol. 2014 740 584 595 10.1016/j.ejphar.2014.06.025 24973693
    [Google Scholar]
  115. Ehteshamfar S.M. Akhbari M. Afshari J.T. Seyedi M. Nikfar B. Shapouri-Moghaddam A. Ghanbarzadeh E. Momtazi-Borojeni A.A. Anti‐inflammatory and immune‐modulatory impacts of berberine on activation of autoreactive T cells in autoimmune inflammation. J. Cell. Mol. Med. 2020 24 23 13573 13588 10.1111/jcmm.16049 33135395
    [Google Scholar]
/content/journals/npj/10.2174/0122103155337960241205070806
Loading
/content/journals/npj/10.2174/0122103155337960241205070806
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test