Skip to content
2000
Volume 16, Issue 3
  • ISSN: 2210-3155
  • E-ISSN: 2210-3163

Abstract

Breast cancer remains a significant health concern worldwide, prompting extensive research into alternative therapies, such as herbal medicine. This review paper will provide insight into the potential of four herbal remedies, namely (thyme), Hibiscus, (sweet wormwood), and , in the management of breast cancer. exhibits anti-cancer properties through its bioactive compounds, including thymol and carvacrol, which demonstrate cytotoxic effects against breast cancer cells. Hibiscus extracts have been shown to inhibit breast cancer cell proliferation, induce apoptosis, and suppress tumor growth by targeting various molecular pathways. Artemisia annua, particularly its active component artemisinin, exhibits promising anti-cancer effects through the induction of apoptosis, inhibition of angiogenesis, and modulation of cell cycle progression in breast cancer cells. Additionally, , rich in bioactive compounds like quercetin and kaempferol, exhibits anti-cancer properties by inhibiting cell proliferation, inducing apoptosis, and suppressing metastasis in breast cancer. These herbal remedies offer potential avenues for further investigation as adjunct therapies or standalone treatments for breast cancer management. However, rigorous clinical trials are warranted to elucidate their efficacy, safety profiles, and optimal dosages for clinical use.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155327969241128110431
2025-01-06
2026-01-02
Loading full text...

Full text loading...

References

  1. MalhotraG.K. ZhaoX. BandH. BandV. Histological, molecular and functional subtypes of breast cancers.Cancer Biol. Ther.2010101095596010.4161/cbt.10.10.1387921057215
    [Google Scholar]
  2. MossS. NyströmL. JonssonH. PaciE. LyngeE. NjorS. BroedersM. The impact of mammographic screening on breast cancer mortality in Europe: A review of trend studies.J. Med. Screen.2012191_suppl)(Suppl. 1263210.1258/jms.2012.01207922972808
    [Google Scholar]
  3. McGrowderD.A. MillerF.G. NwokochaC.R. AndersonM.S. Wilson-ClarkeC. VazK. Anderson-JacksonL. BrownJ. Medicinal herbs used in traditional management of breast cancer: Mechanisms of action.Medicines2020784710.3390/medicines708004732823812
    [Google Scholar]
  4. AcerbiI. CassereauL. DeanI. ShiQ. AuA. ParkC. ChenY.Y. LiphardtJ. HwangE.S. WeaverV.M. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration.Integr. Biol.20157101120113410.1039/c5ib00040h25959051
    [Google Scholar]
  5. PeateM. MeiserB. HickeyM. FriedlanderM. MartinelloR. WakefieldC.E. HickeyM. The fertility-related concerns, needs and preferences of younger women with breast cancer: A systematic review.Breast Cancer Res. Treat.2009116221522310.1007/s10549‑009‑0401‑619390962
    [Google Scholar]
  6. LoiblS. LintermansA. DieudonnéA.S. NevenP. Management of menopausal symptoms in breast cancer patients.Maturitas201168214815410.1016/j.maturitas.2010.11.01321185135
    [Google Scholar]
  7. BártoloA. NevesM. CarvalhoB. ReisS. ValérioE. SantosI.M. MonteiroS. Fertility under uncertainty: Exploring differences in fertility-related concerns and psychosocial aspects between breast cancer survivors and non-cancer infertile women.Breast Cancer20202761177118610.1007/s12282‑020‑01124‑w32583350
    [Google Scholar]
  8. LevitskyD.O. DembitskyV.M. Anti-breast cancer agents derived from plants.Nat. Prod. Bioprospect.20155111610.1007/s13659‑014‑0048‑925466288
    [Google Scholar]
  9. BozorgiA. KhazaeiS. KhademiA. KhazaeiM. Shams-ArdekaniM.R. RahimiR. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells.Iran. J. Basic Med. Sci.202023897098310.22038/IJBMS.2020.48139.1107232952942
    [Google Scholar]
  10. BarayaY.S.B. WongK.K. YaacobN.S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review.Anticancer. Agents Med. Chem.201717677078310.2174/187152061766617020315341927539316
    [Google Scholar]
  11. BasuP. MaierC. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives.Biomed. Pharmacother.20181071648166610.1016/j.biopha.2018.08.10030257383
    [Google Scholar]
  12. GargA.N. SinghV. WeginwarR.G. SagdeoV.N. An elemental correlation study in cancerous and normal breast tissue with successive clinical stages by neutron activation analysis.Biol. Trace Elem. Res.199446318520210.1007/BF027892967702976
    [Google Scholar]
  13. KhanS. AliA. KhanM.I. HaqZ.U. Serum trace elements and antioxidants in breast cancer.Biol. Trace Elem. Res.20201981687710.1007/s12011‑020‑02062‑632020524
    [Google Scholar]
  14. GammelgaardB. JensenM.K. AndersenO. Trace element bioavailability in cancer therapy.Clin. Chim. Acta20083811-211412210.1016/j.cca.2007.12.027
    [Google Scholar]
  15. HazafaA. RehmanK.U. JahanN. JabeenZ. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells.Nutr. Cancer202072338639710.1080/01635581.2019.163700631287738
    [Google Scholar]
  16. ArifH. SohailA. FarhanM. RehmanA.A. AhmadA. HadiS.M. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention.Int. J. Biol. Macromol.201810656957810.1016/j.ijbiomac.2017.08.04928834706
    [Google Scholar]
  17. EfferthT. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy.Semin. Cancer Biol.201746658310.1016/j.semcancer.2017.02.00928254675
    [Google Scholar]
  18. LaskarY.B. LourembamR.M. MazumderP.B. Herbal Remedies for Breast Cancer Prevention and Treatment.IntechOpen202010.5772/intechopen.89679
    [Google Scholar]
  19. NounouM.I. ElAmrawyF. AhmedN. AbdelraoufK. GodaS. Syed-Sha-QhattalH. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies.Breast Cancer,20159s2Suppl. 2BCBCR.S29420.10.4137/BCBCR.S2942026462242
    [Google Scholar]
  20. DhyaniP. QuispeC. SharmaE. BahukhandiA. SatiP. AttriD.C. SzopaA. Sharifi-RadJ. DoceaA.O. MardareI. CalinaD. ChoW.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine.Cancer Cell Int.202222120610.1186/s12935‑022‑02624‑935655306
    [Google Scholar]
  21. GriffithsK. AggarwalB. SinghR. ButtarH. WilsonD. De MeesterF. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention.Diseases2016432810.3390/diseases403002828933408
    [Google Scholar]
  22. KoE.Y. MoonA. Natural products for chemoprevention of breast cancer.J. Cancer Prev.201520422323110.15430/JCP.2015.20.4.22326734584
    [Google Scholar]
  23. SoheilyfarS. VelashjerdiZ. Sayed HajizadehY. Fathi MaroufiN. AminiZ. KhorramiA. Haj AzimianS. IsazadehA. TaefehshokrS. TaefehshokrN. In vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer.JBUON20182351290129630570849
    [Google Scholar]
  24. KimW. LeeW.B. LeeJ.W. MinB.I. BaekS.K. LeeH.S. ChoS.H. Traditional herbal medicine as adjunctive therapy for breast cancer: A systematic review.Complement. Ther. Med.201523462663210.1016/j.ctim.2015.03.01126275657
    [Google Scholar]
  25. CrawfordS. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: A new therapeutic approach to disease progression and recurrence.Ther. Adv. Med. Oncol.201462526810.1177/175883401452111124587831
    [Google Scholar]
  26. TanwarA.K. DhimanN. KumarA. JaitakV. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach.Eur. J. Med. Chem.202121311303710.1016/j.ejmech.2020.11303733257172
    [Google Scholar]
  27. ClèriesR. RooneyR.M. VilardellM. EspinàsJ.A. DybaT. BorrasJ.M. Assessing predicted age-specific breast cancer mortality rates in 27 European countries by 2020.Clin. Transl. Oncol.201820331332110.1007/s12094‑017‑1718‑y28726040
    [Google Scholar]
  28. LiN. DengY. ZhouL. TianT. YangS. WuY. ZhengY. ZhaiZ. HaoQ. SongD. ZhangD. KangH. DaiZ. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the global burden of disease study 2017.J. Hematol. Oncol.201912114010.1186/s13045‑019‑0828‑031864424
    [Google Scholar]
  29. GinsburgO. BrayF. ColemanM.P. VanderpuyeV. EniuA. KothaS.R. SarkerM. HuongT.T. AllemaniC. DvaladzeA. GralowJ. YeatesK. TaylorC. OommanN. KrishnanS. SullivanR. KombeD. BlasM.M. ParhamG. KassamiN. ContehL. The global burden of women’s cancers: A grand challenge in global health.Lancet20173891007184786010.1016/S0140‑6736(16)31392‑727814965
    [Google Scholar]
  30. ArnoldM. MorganE. RumgayH. MafraA. SinghD. LaversanneM. VignatJ. GralowJ.R. CardosoF. SieslingS. SoerjomataramI. Current and future burden of breast cancer: Global statistics for 2020 and 2040.Breast202266152310.1016/j.breast.2022.08.01036084384
    [Google Scholar]
  31. KashyapD. PalD. SharmaR. GargV.K. GoelN. KoundalD. ZaguiaA. KoundalS. BelayA. Global increase in breast cancer incidence: Risk factors and preventive measures.BioMed Res. Int.2022202211610.1155/2022/960543935480139
    [Google Scholar]
  32. MarteiY.M. PaceL.E. BrockJ.E. ShulmanL.N. Breast cancer in low-and middle-income countries: Why we need pathology capability to solve this challenge.Clin. Lab. Med.201838116117310.1016/j.cll.2017.10.01329412880
    [Google Scholar]
  33. AndersonB.O. IlbawiA.M. FidarovaE. WeiderpassE. StevensL. Abdel-WahabM. MikkelsenB. The Global Breast Cancer Initiative: A strategic collaboration to strengthen health care for non-communicable diseases.Lancet Oncol.202122557858110.1016/S1470‑2045(21)00071‑133691141
    [Google Scholar]
  34. OliveiraJ.R. de Jesus ViegasD. MartinsA.P.R. CarvalhoC.A.T. SoaresC.P. CamargoS.E.A. JorgeA.O.C. de OliveiraL.D. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity.Arch. Oral Biol.20178227127910.1016/j.archoralbio.2017.06.03128683409
    [Google Scholar]
  35. KubatkaP. UramovaS. KelloM. KajoK. SamecM. JasekK. VybohovaD. LiskovaA. MojzisJ. AdamkovM. ZuborP. SmejkalK. SvajdlenkaE. SolarP. SamuelS.M. ZulliA. KassayovaM. LasabovaZ. KwonT.K. PecM. DankoJ. BüsselbergD. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro.Int. J. Mol. Sci.2019207174910.3390/ijms2007174930970626
    [Google Scholar]
  36. TabatabaeiS.M. MohammadnejadL. JafariM. KarimiZ. In vitro inhibition of MCF-7 human breast cancer cells by essential oils of Rosmarinus officinalis, Thymus vulgaris L., and Lavender x intermedia.Archives of Breast Cancer201852818910.19187/abc.20185281‑89
    [Google Scholar]
  37. HeidariZ. SalehzadehA. AmiriM.S. Anti-cancer and antioxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles.3 Biotech.201883177
    [Google Scholar]
  38. AbazaM.S.I. OrabiK.Y. Al-QuattanE. Al-AttiyahR.J. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer.Cancer Cell Int.20151514610.1186/s12935‑015‑0194‑026074733
    [Google Scholar]
  39. NiksicH. BecicF. KoricE. GusicI. OmeragicE. MuratovicS. MiladinovicB. DuricK. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines.Sci. Rep.20211111317810.1038/s41598‑021‑92679‑x34162964
    [Google Scholar]
  40. LaskarY.B. MazumderP.B. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L.Biomed. Pharmacother.202012711015310.1016/j.biopha.2020.11015332344257
    [Google Scholar]
  41. NguyenC. BaskaranK. PupulinA. RuvinovI. ZaitoonO. GrewalS. ScariaB. MehaidliA. VeghC. PandeyS. Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics.BMC Complement. Altern. Med.20191919810.1186/s12906‑019‑2505‑931060537
    [Google Scholar]
  42. KhaghaniS. RaziF. YajlooM.M. PaknejadM. ShariftabriziA. PasalarP. Selective cytotoxicity and apoptogenic activity of Hibiscus sabdariffa aqueous extract against MCF-7 human breast cancer cell line.J. Cancer Ther.20112339440010.4236/jct.2011.23054
    [Google Scholar]
  43. SobantuM.P. OkeleyeB.I. OkudohV.I. MeyerM. AbouaY.G. In vitro antioxidant mechanism of action of Hibiscus sabdariffa in the induction of apoptosis against breast cancer.J. Herbs Spices Med. Plants202329321322810.1080/10496475.2022.2135661
    [Google Scholar]
  44. AjiboyeB.O. AkinnusiP.A. FatokiT.H. AdigunD.K. AdewoleZ.O. EfekemoE.O. AyotundeB.T. JuliusB.P. FalodeJ.A. AjuwonO.R. OyinloyeB.E. In silico assessment of Hibiscus sabdariffa as a possible therapeutic agent for breast cancer management.Informatics in Medicine Unlocked20234110133010.1016/j.imu.2023.101330
    [Google Scholar]
  45. MalacridaA. ErriquezJ. HashemiM. Rodriguez-MenendezV. CassettiA. CavalettiG. MilosoM. Evaluation of antitumoral effect of Hibiscus sabdariffa extract on human breast cancer cells.Biochem. Biophys. Rep.20223210135310.1016/j.bbrep.2022.10135336186735
    [Google Scholar]
  46. AmranN. RaniA.A. MahmudR. YinK. Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line.Pharmacognosy Res.201681667010.4103/0974‑8490.17110426941539
    [Google Scholar]
  47. WangY. DingR. TaiZ. HouH. GaoF. SunX. Artemisinin-isatin hybrids with potential antiproliferative activity against breast cancer.Arab. J. Chem.202215310363910.1016/j.arabjc.2021.103639
    [Google Scholar]
  48. GongY. GallisB.M. GoodlettD.R. YangY. LuH. LacosteE. LaiH. SasakiT. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines.Anticancer Res.201333112313223267137
    [Google Scholar]
  49. SinghN.P. LaiH.C. ParkJ.S. GerhardtT.E. KimB.J. WangS. SasakiT. Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo.Anticancer Res.201131124111411422199268
    [Google Scholar]
  50. TinA.S. SundarS.N. TranK.Q. ParkA.H. PoindexterK.M. FirestoneG.L. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes.Anticancer Drugs201223437037910.1097/CAD.0b013e32834f6ea822185819
    [Google Scholar]
  51. SundarS.N. MarconettC.N. DoanV.B. WilloughbyJ.A.Sr FirestoneG.L. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells.Carcinogenesis200829122252225810.1093/carcin/bgn21418784357
    [Google Scholar]
  52. SuberuJ.O. Romero-CanelónI. SullivanN. LapkinA.A. BarkerG.C. Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells.ChemMedChem20149122791279710.1002/cmdc.20140228525209896
    [Google Scholar]
  53. FröhlichT. KissA. WölflingJ. MernyákE. KulmányÁ.E. MinoricsR. ZupkóI. LeidenbergerM. FriedrichO. KappesB. HahnF. MarschallM. SchneiderG. TsogoevaS.B. Synthesis of artemisinin–estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast cancer.ACS Med. Chem. Lett.20189111128113310.1021/acsmedchemlett.8b0038130429957
    [Google Scholar]
  54. HassaniN. Jafari-GharabaghlouD. DadashpourM. ZarghamiN. The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nanoparticles on breast cancer cell lines: potential apoptotic and anti-proliferative action.Appl. Biochem. Biotechnol.2022194104930494510.1007/s12010‑022‑04000‑935674922
    [Google Scholar]
  55. KumariK. KeshariS. SenguptaD. SabatS.C. MishraS.K. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment.BMC Cancer201717185810.1186/s12885‑017‑3863‑729246124
    [Google Scholar]
  56. YaoY. GuoQ. CaoY. QiuY. TanR. YuZ. ZhouY. LuN. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer.J. Exp. Clin. Cancer Res.201837128210.1186/s13046‑018‑0960‑730477536
    [Google Scholar]
  57. ChenG.F. YangM-L. KuoP-C. LinM-C. LiaoM-Y. Chemical constituents of Moringa oleifera and their cytotoxicity against doxorubicin-resistant human breast cancer cell lines (MCF-7/Adr).Chem. Nat. Compd.201450117517810.1007/s10600‑014‑0905‑0
    [Google Scholar]
  58. SuphachaiC. Antioxidant and anticancer activities of Moringa oleifera leaves.J. Med. Plants Res.20148731832510.5897/JMPR2013.5353
    [Google Scholar]
  59. HossainN. MirghaniM.E.S. RausR.B. Optimization of Moringa oleifera leaf extraction and investigation of anti-breast cancer activity with the leaf extract.Engineering International2015329710310.18034/ei.v3i2.194
    [Google Scholar]
  60. Ismail Abiola AdebayoI.A.A. ArsadH.A.H. SamianM.R.S.M.R. Antiproliferative effect on breast cancer (MCF7) of Moringa oleifera seed extracts.Afr. J. Tradit. Complement. Altern. Med.2017142282287
    [Google Scholar]
  61. WelchR.H. TietjeA.H. Investigation of Moringa oleifera leaf extract and its cancer-selective antiproliferative properties.J. S. C. Acad. Sci.201715249
    [Google Scholar]
  62. Al-AsmariA.K. AlbalawiS.M. AtharM.T. KhanA.Q. Al-ShahraniH. IslamM. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines.PLoS One2015108e013581410.1371/journal.pone.013581426288313
    [Google Scholar]
  63. ZhouG. YangZ. WangX. TaoR. ZhouY. TRAIL enhances shikonin induced apoptosis through ROS/JNK signaling in cholangiocarcinoma cells.Cell. Physiol. Biochem.20174231073108610.1159/00047875828662515
    [Google Scholar]
  64. KhanM.N.M. IslamM. Natural product like “shikonin” might be a hope for Breast cancer cure.Malaysian J. Halal Res.201922141810.2478/mjhr‑2019‑0008
    [Google Scholar]
  65. SamarghandianS. HadjzadehM.A.R. AfshariJ.T. HosseiniM. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line.BMC Complement. Altern. Med.201414119210.1186/1472‑6882‑14‑19224935101
    [Google Scholar]
  66. AhlinaF.N. NugraheniN. SalsabilaI.A. HaryantiS. Da’iM. MeiyantoE. Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a co-chemotherapeutic and anti-ageing agent.Asian Pac. J. Cancer Prev.202021110711710.31557/APJCP.2020.21.1.10731983172
    [Google Scholar]
  67. DesaiT.H. JoshiS.V. Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models.J. Ethnopharmacol.201923149450210.1016/j.jep.2018.11.00430408535
    [Google Scholar]
  68. UmarH. KavazD. RizanerN. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines.Int. J. Nanomedicine2018148710010.2147/IJN.S18688830587987
    [Google Scholar]
  69. DeFeudisF.V. PapadopoulosV. DrieuK. Ginkgo biloba extracts and cancer: A research area in its infancy.Fundam. Clin. Pharmacol.200317440541710.1046/j.1472‑8206.2003.00156.x12914542
    [Google Scholar]
  70. YuJ. WangJ. YangJ. OuyangT. GaoH. KanH. YangY. New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer.Phytomedicine202412215508810.1016/j.phymed.2023.15508837844377
    [Google Scholar]
  71. JordanV.C. Tamoxifen: A most unlikely pioneering medicine.Nat. Rev. Drug Discov.20032320521310.1038/nrd103112612646
    [Google Scholar]
  72. GossP.E. Strasser-WeipplK. Aromatase inhibitors for the treatment and prevention of breast cancer.J. Clin. Oncol.201937222020203010.1200/JCO.18.0223411157042
    [Google Scholar]
  73. HudisC.A. Trastuzumab-mechanism of action and use in clinical practice.N. Engl. J. Med.20073571395110.1056/NEJMra04318617611206
    [Google Scholar]
  74. SparanoJ.A. WangM. Taxanes for breast cancer: An evidence-based review of randomized phase II and phase III trials.Clin. Breast Cancer200991435710.3816/CBC.2009.n.00511899388
    [Google Scholar]
  75. KingstonD.G.I. The shape of things to come: Structural and synthetic studies of taxol and related compounds.Phytochemistry200768141844185410.1016/j.phytochem.2006.11.00917184797
    [Google Scholar]
/content/journals/npj/10.2174/0122103155327969241128110431
Loading
/content/journals/npj/10.2174/0122103155327969241128110431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test