Skip to content
2000
image of Recent Advances in the Chemistry of Herbal Drugs for the Management of Breast Cancer: An Update

Abstract

Breast cancer remains a significant health concern worldwide, prompting extensive research into alternative therapies, such as herbal medicine. This review paper will provide insight into the potential of four herbal remedies, namely (thyme), Hibiscus, (sweet wormwood), and , in the management of breast cancer. exhibits anti-cancer properties through its bioactive compounds, including thymol and carvacrol, which demonstrate cytotoxic effects against breast cancer cells. Hibiscus extracts have been shown to inhibit breast cancer cell proliferation, induce apoptosis, and suppress tumor growth by targeting various molecular pathways. Artemisia annua, particularly its active component artemisinin, exhibits promising anti-cancer effects through the induction of apoptosis, inhibition of angiogenesis, and modulation of cell cycle progression in breast cancer cells. Additionally, , rich in bioactive compounds like quercetin and kaempferol, exhibits anti-cancer properties by inhibiting cell proliferation, inducing apoptosis, and suppressing metastasis in breast cancer. These herbal remedies offer potential avenues for further investigation as adjunct therapies or standalone treatments for breast cancer management. However, rigorous clinical trials are warranted to elucidate their efficacy, safety profiles, and optimal dosages for clinical use.

Loading

Article metrics loading...

/content/journals/npj/10.2174/0122103155327969241128110431
2025-01-06
2025-11-03
Loading full text...

Full text loading...

References

  1. Malhotra G.K. Zhao X. Band H. Band V. Histological, molecular and functional subtypes of breast cancers. Cancer Biol. Ther. 2010 10 10 955 960 10.4161/cbt.10.10.13879 21057215
    [Google Scholar]
  2. Moss S. Nyström L. Jonsson H. Paci E. Lynge E. Njor S. Broeders M. The impact of mammographic screening on breast cancer mortality in Europe: A review of trend studies. J. Med. Screen. 2012 19 1_suppl Suppl. 1 26 32 10.1258/jms.2012.012079 22972808
    [Google Scholar]
  3. McGrowder D.A. Miller F.G. Nwokocha C.R. Anderson M.S. Wilson-Clarke C. Vaz K. Anderson-Jackson L. Brown J. Medicinal herbs used in traditional management of breast cancer: Mechanisms of action. Medicines 2020 7 8 47 10.3390/medicines7080047 32823812
    [Google Scholar]
  4. Acerbi I. Cassereau L. Dean I. Shi Q. Au A. Park C. Chen Y.Y. Liphardt J. Hwang E.S. Weaver V.M. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 2015 7 10 1120 1134 10.1039/c5ib00040h 25959051
    [Google Scholar]
  5. Peate M. Meiser B. Hickey M. Friedlander M. Martinello R. Wakefield C.E. Hickey M. The fertility-related concerns, needs and preferences of younger women with breast cancer: A systematic review. Breast Cancer Res. Treat. 2009 116 2 215 223 10.1007/s10549‑009‑0401‑6 19390962
    [Google Scholar]
  6. Loibl S. Lintermans A. Dieudonné A.S. Neven P. Management of menopausal symptoms in breast cancer patients. Maturitas 2011 68 2 148 154 10.1016/j.maturitas.2010.11.013 21185135
    [Google Scholar]
  7. Bártolo A. Neves M. Carvalho B. Reis S. Valério E. Santos I.M. Monteiro S. Fertility under uncertainty: Exploring differences in fertility-related concerns and psychosocial aspects between breast cancer survivors and non-cancer infertile women. Breast Cancer 2020 27 6 1177 1186 10.1007/s12282‑020‑01124‑w 32583350
    [Google Scholar]
  8. Levitsky D.O. Dembitsky V.M. Anti-breast cancer agents derived from plants. Nat. Prod. Bioprospect. 2015 5 1 1 16 10.1007/s13659‑014‑0048‑9 25466288
    [Google Scholar]
  9. Bozorgi A. Khazaei S. Khademi A. Khazaei M. Shams-Ardekani M.R. Rahimi R. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iran. J. Basic Med. Sci. 2020 23 8 970 983 10.22038/IJBMS.2020.48139.11072 32952942
    [Google Scholar]
  10. Baraya Y.S.B. Wong K.K. Yaacob N.S. The immunomodulatory potential of selected bioactive plant-based compounds in breast cancer: A review. Anticancer. Agents Med. Chem. 2017 17 6 770 783 10.2174/1871520617666170203153419 27539316
    [Google Scholar]
  11. Basu P. Maier C. Phytoestrogens and breast cancer: In vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed. Pharmacother. 2018 107 1648 1666 10.1016/j.biopha.2018.08.100 30257383
    [Google Scholar]
  12. Garg A.N. Singh V. Weginwar R.G. Sagdeo V.N. An elemental correlation study in cancerous and normal breast tissue with successive clinical stages by neutron activation analysis. Biol. Trace Elem. Res. 1994 46 3 185 202 10.1007/BF02789296 7702976
    [Google Scholar]
  13. Khan S. Ali A. Khan M.I. Haq Z.U. Serum trace elements and antioxidants in breast cancer. Biol. Trace Elem. Res. 2020 198 1 68 77 10.1007/s12011‑020‑02062‑6 32020524
    [Google Scholar]
  14. Gammelgaard B. Jensen M.K. Andersen O. Trace element bioavailability in cancer therapy. Clin. Chim. Acta 2008 381 1-2 114 122 10.1016/j.cca.2007.12.027
    [Google Scholar]
  15. Hazafa A. Rehman K.U. Jahan N. Jabeen Z. The role of polyphenol (flavonoids) compounds in the treatment of cancer cells. Nutr. Cancer 2020 72 3 386 397 10.1080/01635581.2019.1637006 31287738
    [Google Scholar]
  16. Arif H. Sohail A. Farhan M. Rehman A.A. Ahmad A. Hadi S.M. Flavonoids-induced redox cycling of copper ions leads to generation of reactive oxygen species: A potential role in cancer chemoprevention. Int. J. Biol. Macromol. 2018 106 569 578 10.1016/j.ijbiomac.2017.08.049 28834706
    [Google Scholar]
  17. Efferth T. From ancient herb to modern drug: Artemisia annua and artemisinin for cancer therapy. Semin. Cancer Biol. 2017 46 65 83 10.1016/j.semcancer.2017.02.009 28254675
    [Google Scholar]
  18. Laskar Y. B. Lourembam R. M. Mazumder P. B. Herbal Remedies for Breast Cancer Prevention and Treatment. IntechOpen 2020 10.5772/intechopen.89679
    [Google Scholar]
  19. Nounou M.I. ElAmrawy F. Ahmed N. Abdelraouf K. Goda S. Syed-Sha-Qhattal H. Breast cancer: Conventional diagnosis and treatment modalities and recent patents and technologies. Breast Cancer 2015 9s2 Suppl. 2 BCBCR.S29420 10.4137/BCBCR.S29420 26462242
    [Google Scholar]
  20. Dhyani P. Quispe C. Sharma E. Bahukhandi A. Sati P. Attri D.C. Szopa A. Sharifi-Rad J. Docea A.O. Mardare I. Calina D. Cho W.C. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022 22 1 206 10.1186/s12935‑022‑02624‑9 35655306
    [Google Scholar]
  21. Griffiths K. Aggarwal B. Singh R. Buttar H. Wilson D. De Meester F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases 2016 4 3 28 10.3390/diseases4030028 28933408
    [Google Scholar]
  22. Ko E.Y. Moon A. Natural products for chemoprevention of breast cancer. J. Cancer Prev. 2015 20 4 223 231 10.15430/JCP.2015.20.4.223 26734584
    [Google Scholar]
  23. Soheilyfar S. Velashjerdi Z. Sayed Hajizadeh Y. Fathi Maroufi N. Amini Z. Khorrami A. Haj Azimian S. Isazadeh A. Taefehshokr S. Taefehshokr N. In vivo and in vitro impact of miR-31 and miR-143 on the suppression of metastasis and invasion in breast cancer. J. BUON 2018 23 5 1290 1296 30570849
    [Google Scholar]
  24. Kim W. Lee W.B. Lee J.W. Min B.I. Baek S.K. Lee H.S. Cho S.H. Traditional herbal medicine as adjunctive therapy for breast cancer: A systematic review. Complement. Ther. Med. 2015 23 4 626 632 10.1016/j.ctim.2015.03.011 26275657
    [Google Scholar]
  25. Crawford S. Anti-inflammatory/antioxidant use in long-term maintenance cancer therapy: A new therapeutic approach to disease progression and recurrence. Ther. Adv. Med. Oncol. 2014 6 2 52 68 10.1177/1758834014521111 24587831
    [Google Scholar]
  26. Tanwar A.K. Dhiman N. Kumar A. Jaitak V. Engagement of phytoestrogens in breast cancer suppression: Structural classification and mechanistic approach. Eur. J. Med. Chem. 2021 213 113037 10.1016/j.ejmech.2020.113037 33257172
    [Google Scholar]
  27. Clèries R. Rooney R.M. Vilardell M. Espinàs J.A. Dyba T. Borras J.M. Assessing predicted age-specific breast cancer mortality rates in 27 European countries by 2020. Clin. Transl. Oncol. 2018 20 3 313 321 10.1007/s12094‑017‑1718‑y 28726040
    [Google Scholar]
  28. Li N. Deng Y. Zhou L. Tian T. Yang S. Wu Y. Zheng Y. Zhai Z. Hao Q. Song D. Zhang D. Kang H. Dai Z. Global burden of breast cancer and attributable risk factors in 195 countries and territories, from 1990 to 2017: results from the global burden of disease study 2017. J. Hematol. Oncol. 2019 12 1 140 10.1186/s13045‑019‑0828‑0 31864424
    [Google Scholar]
  29. Ginsburg O. Bray F. Coleman M.P. Vanderpuye V. Eniu A. Kotha S.R. Sarker M. Huong T.T. Allemani C. Dvaladze A. Gralow J. Yeates K. Taylor C. Oomman N. Krishnan S. Sullivan R. Kombe D. Blas M.M. Parham G. Kassami N. Conteh L. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017 389 10071 847 860 10.1016/S0140‑6736(16)31392‑7 27814965
    [Google Scholar]
  30. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  31. Kashyap D. Pal D. Sharma R. Garg V.K. Goel N. Koundal D. Zaguia A. Koundal S. Belay A. Global increase in breast cancer incidence: Risk factors and preventive measures. BioMed Res. Int. 2022 2022 1 16 10.1155/2022/9605439 35480139
    [Google Scholar]
  32. Martei Y.M. Pace L.E. Brock J.E. Shulman L.N. Breast cancer in low-and middle-income countries: Why we need pathology capability to solve this challenge. Clin. Lab. Med. 2018 38 1 161 173 10.1016/j.cll.2017.10.013 29412880
    [Google Scholar]
  33. Anderson B.O. Ilbawi A.M. Fidarova E. Weiderpass E. Stevens L. Abdel-Wahab M. Mikkelsen B. The Global Breast Cancer Initiative: A strategic collaboration to strengthen health care for non-communicable diseases. Lancet Oncol. 2021 22 5 578 581 10.1016/S1470‑2045(21)00071‑1 33691141
    [Google Scholar]
  34. Oliveira J.R. de Jesus Viegas D. Martins A.P.R. Carvalho C.A.T. Soares C.P. Camargo S.E.A. Jorge A.O.C. de Oliveira L.D. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch. Oral Biol. 2017 82 271 279 10.1016/j.archoralbio.2017.06.031 28683409
    [Google Scholar]
  35. Kubatka P. Uramova S. Kello M. Kajo K. Samec M. Jasek K. Vybohova D. Liskova A. Mojzis J. Adamkov M. Zubor P. Smejkal K. Svajdlenka E. Solar P. Samuel S.M. Zulli A. Kassayova M. Lasabova Z. Kwon T.K. Pec M. Danko J. Büsselberg D. Anticancer activities of Thymus vulgaris L. in experimental breast carcinoma in vivo and in vitro. Int. J. Mol. Sci. 2019 20 7 1749 10.3390/ijms20071749 30970626
    [Google Scholar]
  36. Tabatabaei S.M. Mohammadnejad L. Jafari M. Karimi Z. In vitro inhibition of MCF-7 human breast cancer cells by essential oils of Rosmarinus officinalis, Thymus vulgaris L., and Lavender x intermedia. Archives of Breast Cancer 2018 5 2 81 89 10.19187/abc.20185281‑89
    [Google Scholar]
  37. Heidari Z. Salehzadeh A. Amiri M. S. Anti-cancer and anti-oxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles. 3 Biotech 2018 8 3 177
    [Google Scholar]
  38. Abaza M.S.I. Orabi K.Y. Al-Quattan E. Al-Attiyah R.J. Growth inhibitory and chemo-sensitization effects of naringenin, a natural flavanone purified from Thymus vulgaris, on human breast and colorectal cancer. Cancer Cell Int. 2015 15 1 46 10.1186/s12935‑015‑0194‑0 26074733
    [Google Scholar]
  39. Niksic H. Becic F. Koric E. Gusic I. Omeragic E. Muratovic S. Miladinovic B. Duric K. Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines. Sci. Rep. 2021 11 1 13178 10.1038/s41598‑021‑92679‑x 34162964
    [Google Scholar]
  40. Laskar Y.B. Mazumder P.B. Insight into the molecular evidence supporting the remarkable chemotherapeutic potential of Hibiscus sabdariffa L. Biomed. Pharmacother. 2020 127 110153 10.1016/j.biopha.2020.110153 32344257
    [Google Scholar]
  41. Nguyen C. Baskaran K. Pupulin A. Ruvinov I. Zaitoon O. Grewal S. Scaria B. Mehaidli A. Vegh C. Pandey S. Hibiscus flower extract selectively induces apoptosis in breast cancer cells and positively interacts with common chemotherapeutics. BMC Complement. Altern. Med. 2019 19 1 98 10.1186/s12906‑019‑2505‑9 31060537
    [Google Scholar]
  42. Khaghani S. Razi F. Yajloo M.M. Paknejad M. Shariftabrizi A. Pasalar P. Selective cytotoxicity and apoptogenic activity of Hibiscus sabdariffa aqueous extract against MCF-7 human breast cancer cell line. J. Cancer Ther. 2011 2 3 394 400 10.4236/jct.2011.23054
    [Google Scholar]
  43. Sobantu M.P. Okeleye B.I. Okudoh V.I. Meyer M. Aboua Y.G. In vitro antioxidant mechanism of action of Hibiscus sabdariffa in the induction of apoptosis against breast cancer. J. Herbs Spices Med. Plants 2023 29 3 213 228 10.1080/10496475.2022.2135661
    [Google Scholar]
  44. Ajiboye B.O. Akinnusi P.A. Fatoki T.H. Adigun D.K. Adewole Z.O. Efekemo E.O. Ayotunde B.T. Julius B.P. Falode J.A. Ajuwon O.R. Oyinloye B.E. In silico assessment of Hibiscus sabdariffa as a possible therapeutic agent for breast cancer management. Informatics in Medicine Unlocked 2023 41 101330 10.1016/j.imu.2023.101330
    [Google Scholar]
  45. Malacrida A. Erriquez J. Hashemi M. Rodriguez-Menendez V. Cassetti A. Cavaletti G. Miloso M. Evaluation of antitumoral effect of Hibiscus sabdariffa extract on human breast cancer cells. Biochem. Biophys. Rep. 2022 32 101353 10.1016/j.bbrep.2022.101353 36186735
    [Google Scholar]
  46. Amran N. Rani A.A. Mahmud R. Yin K. Antioxidant and cytotoxic effect of Barringtonia racemosa and Hibiscus sabdariffa fruit extracts in MCF-7 human breast cancer cell line. Pharmacognosy Res. 2016 8 1 66 70 10.4103/0974‑8490.171104 26941539
    [Google Scholar]
  47. Wang Y. Ding R. Tai Z. Hou H. Gao F. Sun X. Artemisinin-isatin hybrids with potential antiproliferative activity against breast cancer. Arab. J. Chem. 2022 15 3 103639 10.1016/j.arabjc.2021.103639
    [Google Scholar]
  48. Gong Y. Gallis B.M. Goodlett D.R. Yang Y. Lu H. Lacoste E. Lai H. Sasaki T. Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines. Anticancer Res. 2013 33 1 123 132 23267137
    [Google Scholar]
  49. Singh N.P. Lai H.C. Park J.S. Gerhardt T.E. Kim B.J. Wang S. Sasaki T. Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res. 2011 31 12 4111 4114 22199268
    [Google Scholar]
  50. Tin A.S. Sundar S.N. Tran K.Q. Park A.H. Poindexter K.M. Firestone G.L. Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 2012 23 4 370 379 10.1097/CAD.0b013e32834f6ea8 22185819
    [Google Scholar]
  51. Sundar S.N. Marconett C.N. Doan V.B. Willoughby J.A. Sr Firestone G.L. Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells. Carcinogenesis 2008 29 12 2252 2258 10.1093/carcin/bgn214 18784357
    [Google Scholar]
  52. Suberu J.O. Romero-Canelón I. Sullivan N. Lapkin A.A. Barker G.C. Comparative cytotoxicity of artemisinin and cisplatin and their interactions with chlorogenic acids in MCF7 breast cancer cells. ChemMedChem 2014 9 12 2791 2797 10.1002/cmdc.201402285 25209896
    [Google Scholar]
  53. Fröhlich T. Kiss A. Wölfling J. Mernyák E. Kulmány Á.E. Minorics R. Zupkó I. Leidenberger M. Friedrich O. Kappes B. Hahn F. Marschall M. Schneider G. Tsogoeva S.B. Synthesis of artemisinin–estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast cancer. ACS Med. Chem. Lett. 2018 9 11 1128 1133 10.1021/acsmedchemlett.8b00381 30429957
    [Google Scholar]
  54. Hassani N. Jafari-Gharabaghlou D. Dadashpour M. Zarghami N. The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nanoparticles on breast cancer cell lines: potential apoptotic and anti-proliferative action. Appl. Biochem. Biotechnol. 2022 194 10 4930 4945 10.1007/s12010‑022‑04000‑9 35674922
    [Google Scholar]
  55. Kumari K. Keshari S. Sengupta D. Sabat S.C. Mishra S.K. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer 2017 17 1 858 10.1186/s12885‑017‑3863‑7 29246124
    [Google Scholar]
  56. Yao Y. Guo Q. Cao Y. Qiu Y. Tan R. Yu Z. Zhou Y. Lu N. Artemisinin derivatives inactivate cancer-associated fibroblasts through suppressing TGF-β signaling in breast cancer. J. Exp. Clin. Cancer Res. 2018 37 1 282 10.1186/s13046‑018‑0960‑7 30477536
    [Google Scholar]
  57. Chen G.F. Yang M-L. Kuo P-C. Lin M-C. Liao M-Y. Chemical constituents of Moringa oleifera and their cytotoxicity against doxorubicin-resistant human breast cancer cell lines (MCF-7/Adr). Chem. Nat. Compd. 2014 50 1 175 178 10.1007/s10600‑014‑0905‑0
    [Google Scholar]
  58. Suphachai C. Antioxidant and anticancer activities of Moringa oleifera leaves. J. Med. Plants Res. 2014 8 7 318 325 10.5897/JMPR2013.5353
    [Google Scholar]
  59. Hossain N. Mirghani M.E.S. Raus R.B. Optimization of Moringa oleifera leaf extraction and investigation of anti-breast cancer activity with the leaf extract. Engineering International 2015 3 2 97 103 10.18034/ei.v3i2.194
    [Google Scholar]
  60. Ismail Abiola Adebayo I.A.A. Arsad H.A.H. Samian M.R.S.M.R. Antiproliferative effect on breast cancer (MCF7) of moringa oleifera seed extracts. Afr J Tradit Complement Altern Med 2017 14 2 282 287
    [Google Scholar]
  61. Welch R.H. Tietje A.H. Investigation of Moringa oleifera leaf extract and its cancer-selective antiproliferative properties. J. S. C. Acad. Sci. 2017 15 2 4 9
    [Google Scholar]
  62. Al-Asmari A.K. Albalawi S.M. Athar M.T. Khan A.Q. Al-Shahrani H. Islam M. Moringa oleifera as an anti-cancer agent against breast and colorectal cancer cell lines. PLoS One 2015 10 8 e0135814 10.1371/journal.pone.0135814 26288313
    [Google Scholar]
  63. Zhou G. Yang Z. Wang X. Tao R. Zhou Y. TRAIL enhances shikonin induced apoptosis through ROS/JNK signaling in cholangiocarcinoma cells. Cell. Physiol. Biochem. 2017 42 3 1073 1086 10.1159/000478758 28662515
    [Google Scholar]
  64. Khan M.N.M. Islam M. Natural product like “shikonin” might be a hope for Breast cancer cure. Malaysian Journal of Halal Research 2019 2 2 14 18 10.2478/mjhr‑2019‑0008
    [Google Scholar]
  65. Samarghandian S. Hadjzadeh M.A.R. Afshari J.T. Hosseini M. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line. BMC Complement. Altern. Med. 2014 14 1 192 10.1186/1472‑6882‑14‑192 24935101
    [Google Scholar]
  66. Ahlina F.N. Nugraheni N. Salsabila I.A. Haryanti S. Da’i M. Meiyanto E. Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a co-chemotherapeutic and anti-ageing agent. Asian Pac. J. Cancer Prev. 2020 21 1 107 117 10.31557/APJCP.2020.21.1.107 31983172
    [Google Scholar]
  67. Desai T.H. Joshi S.V. Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models. J. Ethnopharmacol. 2019 231 494 502 10.1016/j.jep.2018.11.004 30408535
    [Google Scholar]
  68. Umar H. Kavaz D. Rizaner N. Biosynthesis of zinc oxide nanoparticles using Albizia lebbeck stem bark, and evaluation of its antimicrobial, antioxidant, and cytotoxic activities on human breast cancer cell lines. Int. J. Nanomedicine 2018 14 87 100 10.2147/IJN.S186888 30587987
    [Google Scholar]
  69. DeFeudis F.V. Papadopoulos V. Drieu K. Ginkgo biloba extracts and cancer: A research area in its infancy. Fundam. Clin. Pharmacol. 2003 17 4 405 417 10.1046/j.1472‑8206.2003.00156.x 12914542
    [Google Scholar]
  70. Yu J. Wang J. Yang J. Ouyang T. Gao H. Kan H. Yang Y. New insight into the mechanisms of Ginkgo biloba leaves in the treatment of cancer. Phytomedicine 2024 122 155088 10.1016/j.phymed.2023.155088 37844377
    [Google Scholar]
  71. Jordan V.C. Tamoxifen: A most unlikely pioneering medicine. Nat. Rev. Drug Discov. 2003 2 3 205 213 10.1038/nrd1031 12612646
    [Google Scholar]
  72. Goss P.E. Strasser-Weippl K. Aromatase inhibitors for the treatment and prevention of breast cancer. J. Clin. Oncol. 2019 37 22 2020 2030 10.1200/JCO.18.02234 11157042
    [Google Scholar]
  73. Hudis C.A. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 2007 357 1 39 51 10.1056/NEJMra043186 17611206
    [Google Scholar]
  74. Sparano J.A. Wang M. Taxanes for breast cancer: An evidence-based review of randomized phase II and phase III trials. Clin. Breast Cancer 2009 9 1 43 57 10.3816/CBC.2009.n.005 11899388
    [Google Scholar]
  75. Kingston D.G.I. The shape of things to come: Structural and synthetic studies of taxol and related compounds. Phytochemistry 2007 68 14 1844 1854 10.1016/j.phytochem.2006.11.009 17184797
    [Google Scholar]
/content/journals/npj/10.2174/0122103155327969241128110431
Loading
/content/journals/npj/10.2174/0122103155327969241128110431
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Breast cancer ; moringa ; Thymus vulgaris ; herbal medicine ; phytoconstituents
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test