Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

Background

Pediatric inflammatory bowel disease [IBD] impacts affected children with many diagnostic, therapeutic, and life challenges. The traditional drugs used for induction and maintenance of remission had many unwanted side effects. Therefore, there was an urgent need for safer, more effective therapeutic strategies. Hence, modifying the gut microbiota [GM] was proposed as an innovative approach based on the theory that restoring the disturbed GM harmony will have a positive impact on IBD activity and remission.

Aim

This review aimed to examine each modality used to modify the gut microbiota in children with IBD, addressing their action mode, effectiveness, limitations, and side effects for a more holistic approach to children with IBD.

Methods

Four electronic databases were searched, including WOS, Cochrane Library, PubMed, and Scopus, for articles that investigated modulating GM exclusive enteral nutrition, prebiotics, dietary fiber, probiotics, fecal microbiota transplantation, and antibiotics.

Results

The available evidence was encouraging regarding their effectiveness and safety; however, those studies were hindered by their small sampling size and inconsistency in recruiting cases.

Conclusion

Further work should identify other therapeutic and prognostic avenues for modulating GM for these vulnerable groups.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882356553250306050102
2024-01-01
2025-11-01
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882356553.html?itemId=/content/journals/nemj/10.2174/0102506882356553250306050102&mimeType=html&fmt=ahah

References

  1. NgS.C. ShiH.Y. HamidiN. UnderwoodF.E. TangW. BenchimolE.I. PanaccioneR. GhoshS. WuJ.C.Y. ChanF.K.L. SungJ.J.Y. KaplanG.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies.Lancet2017390101142769277810.1016/S0140‑6736(17)32448‑029050646
    [Google Scholar]
  2. Jarmakiewicz-CzajaS. ZielińskaM. SokalA. FilipR. Genetic and epigenetic etiology of inflammatory bowel disease: An update.Genes20221312238810.3390/genes1312238836553655
    [Google Scholar]
  3. GuanQ. Comprehensive review and update on the pathogenesis of inflammatory bowel disease.J. Immunol. Res20192019724723810.1155/2019/7247238
    [Google Scholar]
  4. RosenM.J. DhawanA. SaeedS.A. Inflammatory bowel disease in children and adolescents.JAMA Pediatr.201516911105310.1001/jamapediatrics.2015.1982
    [Google Scholar]
  5. VyasS.P. GoswamiR. A decade of Th9 cells: Role of Th9 cells in inflammatory bowel disease.Front. Immunol.20189113910.3389/fimmu.2018.0113929881387
    [Google Scholar]
  6. Wiredu OcanseyD.K. HangS. YuanX. QianH. ZhouM. Valerie OlovoC. ZhangX. MaoF. The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease.Gut Microbes2023151217611810.1080/19490976.2023.217611836794838
    [Google Scholar]
  7. YanJ. WangL. GuY. HouH. LiuT. DingY. CaoH. Dietary patterns and gut microbiota changes in inflammatory bowel disease: current insights and future challenges.Nutrients20221419400310.3390/nu14194003
    [Google Scholar]
  8. KasapogluM. YadavalliR. NawazS. AlthwanayA. AlEdaniE.M. KaurH. ButtS. The impact of microbiome interventions on the progression and severity of inflammatory bowel disease: A systematic review.Cureus202410.7759/cureus.c205
    [Google Scholar]
  9. KhalilipourB.S. DayA.S. KenrickK. SchultzM. AluzaiteK. Diagnostic Delay in paediatric inflammatory bowel disease: A systematic investigation.J. Clin. Med.20221114416110.3390/jcm1114416135887925
    [Google Scholar]
  10. GuarisoG. GasparettoM. Treating children with inflammatory bowel disease: Current and new perspectives.World J. Gastroenterol.201723305469548510.3748/wjg.v23.i30.546928852307
    [Google Scholar]
  11. ViganòC.A. BeltramiM.M. BosiM.F. ZanelloR. ValtortaM. MaconiG. Alexithymia and psychopathology in patients suffering from inflammatory bowel disease: Arising differences and correlations to tailoring therapeutic strategies.Front. Psychiatry2018932410.3389/fpsyt.2018.0032430127753
    [Google Scholar]
  12. BayM.C. NúñezF.P. QueraR. YarurA.J. Current perspectives on pediatric inflammatory bowel disease focusing on transitional care management. What should we consider?Gastroenterol. Hepatol.202346139147
    [Google Scholar]
  13. KelsenJ.R. SullivanK.E. Inflammatory bowel disease in primary immunodeficiencies.Curr. Allergy Asthma Rep.20171785710.1007/s11882‑017‑0724‑z28755025
    [Google Scholar]
  14. TrivediP.J. AdamsD.H. Chemokines and chemokine receptors as therapeutic targets in inflammatory bowel disease; Pitfalls and promise.J. Crohn’s Colitis20181212150810.1093/ecco‑jcc/jjy130
    [Google Scholar]
  15. ParienteB. HuS. BettenworthD. SpecaS. DesreumauxP. MeuwisM.A. DaneseS. RiederF. LouisE. Treatments for crohn’s disease–associated bowel damage: A systematic review.Clin. Gastroenterol. Hepatol.201917584785610.1016/j.cgh.2018.06.043
    [Google Scholar]
  16. RoshJ.R. GrossT. MamulaP. GriffithsA. HyamsJ. Hepatosplenic T-cell lymphoma in adolescents and young adults with Crohnʼs disease: A cautionary tale?Inflamm. Bowel Dis.20071381024103010.1002/ibd.2016917480018
    [Google Scholar]
  17. NguyenV.Q. MaysJ.L. LangM. WuY. DassopoulosT. RegueiroM. MossA. ProctorD.D. SorrentinoD. Knowledge gaps in the management of postoperative crohn’s disease: A US national survey.Dig. Dis. Sci.2018631536010.1007/s10620‑017‑4844‑z29147878
    [Google Scholar]
  18. Van LimbergenJ. RussellR.K. DrummondH.E. AldhousM.C. RoundN.K. NimmoE.R. SmithL. GillettP.M. McGroganP. WeaverL.T. BissetW.M. MahdiG. ArnottI.D. SatsangiJ. WilsonD.C. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease.Gastroenterology200813541114112210.1053/j.gastro.2008.06.08118725221
    [Google Scholar]
  19. DhaliwalJ. WaltersT.D. MackD.R. HuynhH.Q. JacobsonK. OtleyA.R. DebruynJ. El-MataryW. DeslandresC. SherlockM.E. CritchJ.N. BaxK. SeidmanE. JantchouP. RicciutoA. RashidM. MuiseA.M. WineE. CarrollM. LawrenceS. Van LimbergenJ. BenchimolE.I. ChurchP. GriffithsA.M. Phenotypic variation in paediatric inflammatory bowel disease by age: A multicentre prospective inception cohort study of the canadian children IBD network.J. Crohn’s Colitis202014444545410.1093/ecco‑jcc/jjz10631136648
    [Google Scholar]
  20. MieleE. ShamirR. AloiM. AssaA. BraeggerC. BronskyJ. de RidderL. EscherJ.C. HojsakI. KolačekS. KoletzkoS. LevineA. LionettiP. MartinelliM. RuemmeleF. RussellR.K. BonehR.S. van LimbergenJ. VeeremanG. StaianoA. Nutrition in pediatric inflammatory bowel disease.J. Pediatr. Gastroenterol. Nutr.201866468770810.1097/MPG.000000000000189629570147
    [Google Scholar]
  21. SantanaP.T. RosasS.L.B. RibeiroB.E. MarinhoY. de SouzaH.S.P. Dysbiosis in inflammatory bowel disease: Pathogenic role and potential therapeutic targets.Int. J. Mol. Sci.2022237346410.3390/ijms2307346435408838
    [Google Scholar]
  22. AbdullahS.K. BakirW.A. AlsikafiM.I. Analysis of correlation between the important helicobacter pylori virulence genes (CagA, SabA and Oip) and gastric epithelial stem cells (LGR5) in patients with gastric disease.Mustansiriya. Med. J.20232219810510.4103/mj.mj_5_23
    [Google Scholar]
  23. ZhengJ. SunQ. ZhangJ. NgS.C. The role of gut microbiome in inflammatory bowel disease diagnosis and prognosis.United European Gastroenterol. J.202210101091110210.1002/ueg2.1233836461896
    [Google Scholar]
  24. SultanS. El-MowafyM. ElgamlA. AhmedT.A.E. HassanH. MottaweaW. Metabolic influences of gut microbiota dysbiosis on inflammatory bowel disease.Front. Physiol.20211271550610.3389/fphys.2021.71550634646151
    [Google Scholar]
  25. SilvaY.P. BernardiA. FrozzaR.L. The role of short-chain fatty acids from gut microbiota in gut-brain communication.Front. Endocrinol. (Lausanne)2020112510.3389/fendo.2020.00025
    [Google Scholar]
  26. KhanI. UllahN. ZhaL. BaiY. KhanA. ZhaoT. CheT. ZhangC. Alteration of gut microbiota in inflammatory bowel disease [IBD]: Cause or consequence? IBD treatment targeting the gut microbiome.Pathogens20198312610.3390/pathogens8030126
    [Google Scholar]
  27. KałużnaA. OlczykP. Komosińska-VassevK. The Role of innate and adaptive immune cells in the pathogenesis and development of the inflammatory response in ulcerative colitis.J. Clin. Med.202211240010.3390/jcm1102040035054093
    [Google Scholar]
  28. SaezA. Herrero-FernandezB. Gomez-BrisR. Sánchez-MartinezH. Gonzalez-GranadoJ.M. Pathophysiology of inflammatory bowel disease: Innate immune system.Int. J. Mol. Sci.2023242152610.3390/ijms2402152636675038
    [Google Scholar]
  29. ZhangY. SiX. YangL. WangH. SunY. LiuN. Association between intestinal microbiota and inflammatory bowel disease.Animal Model. Exp. Med.20225431132210.1002/ame2.12255
    [Google Scholar]
  30. PantaziA.C. KassimM.A.K. NoriW. TutaL.A. MihaiC.M. ChisnoiuT. BalasaA.L. MihaiL. LupuA. FrecusC.E. LupuV.V. ChirilaS.I. BadescuA.G. HanganL.T. CambreaS.C. Clinical perspectives of gut microbiota in patients with chronic kidney disease and end-stage kidney disease: Where do we stand?Biomedicines2023119248010.3390/biomedicines1109248037760920
    [Google Scholar]
  31. RahmanM.M. IslamF. The gut microbiota (Microbiome) in cardiovascular disease and its therapeutic regulation.Front Cell Infect Microbiol.20221290357010.3389/fcimb.2022.903570
    [Google Scholar]
  32. GordonH. BurischJ. EllulP. KarmirisK. KatsanosK. AlloccaM. ECCO guidelines on extraintestinal manifestations in inflammatory bowel disease.J. Crohn’s Colitis202317682710.1093/ecco‑jcc/jjac187
    [Google Scholar]
  33. Van LimbergenJ. HaskettJ. GriffithsA.M. CritchJ. HuynhH. AhmedN. deBruynJ.C. IssenmanR. El-MataryW. WaltersT.D. KlutheC. RoyM.E. SheppardE. CrandallW.V. CohenS. RuemmeleF.M. LevineA. OtleyA.R. Toward enteral nutrition for the treatment of pediatric Crohn disease in Canada: A workshop to identify barriers and enablers.Can. J. Gastroenterol. Hepatol.201529735135610.1155/2015/50949726076398
    [Google Scholar]
  34. Eindor-AbarbanelA. HealeyG.R. JacobsonK. Therapeutic advances in gut microbiome modulation in patients with inflammatory bowel disease from pediatrics to adulthood.Int. J. Mol. Sci.202122221250610.3390/ijms22221250634830388
    [Google Scholar]
  35. van RheenenP.F. AloiM. AssaA. BronskyJ. EscherJ.C. FagerbergU.L. GasparettoM. GerasimidisK. GriffithsA. HendersonP. KoletzkoS. KolhoK-L. LevineA. van LimbergenJ. Martin de CarpiF.J. Navas-LópezV.M. OlivaS. de RidderL. RussellR.K. ShouvalD. SpinelliA. TurnerD. WilsonD. WineE. RuemmeleF.M. The medical management of paediatric crohn’s disease: An ECCO-ESPGHAN guideline update.J. Crohn’s Colitis202115217119410.1093/ecco‑jcc/jjaa161
    [Google Scholar]
  36. LunkenG.R. TsaiK. SchickA. LiskoD.J. CookL. VallanceB.A. JacobsonK. Prebiotic enriched exclusive enteral nutrition suppresses colitis via gut microbiome modulation and expansion of anti-inflammatory T cells in a mouse model of colitis.Cell. Mol. Gastroenterol. Hepatol.20211241251126610.1016/j.jcmgh.2021.06.01134214707
    [Google Scholar]
  37. LionettiP. CallegariM.L. FerrariS. CavicchiM.C. PozziE. de MartinoM. MorelliL. Enteral nutrition and microflora in pediatric Crohn’s disease.JPEN J. Parenter. Enteral Nutr.2005294SSuppl.S173S17510.1177/01486071050290S4S17315980280
    [Google Scholar]
  38. GerasimidisK. BertzM. HanskeL. JunickJ. BiskouO. AguileraM. GarrickV. RussellR.K. BlautM. McGroganP. EdwardsC.A. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn’s disease during enteral nutrition.Inflamm. Bowel Dis.201420586187110.1097/MIB.000000000000002324651582
    [Google Scholar]
  39. QuinceC. IjazU.Z. LomanN. ErenM.A. SaulnierD. RussellJ. HaigS.J. CalusS.T. QuickJ. BarclayA. BertzM. BlautM. HansenR. McGroganP. RussellR.K. EdwardsC.A. GerasimidisK. Extensive modulation of the fecal metagenome in children with Crohn’s disease during exclusive enteral nutrition.Am. J. Gastroenterol.2015110121718172910.1038/ajg.2015.35726526081
    [Google Scholar]
  40. PigneurB. LepageP. MondotS. SchmitzJ. GouletO. DoréJ. RuemmeleF.M. Mucosal healing and bacterial composition in response to enteral nutrition vs steroid-based induction therapy: A randomised prospective clinical trial in children with crohn’s disease.J. Crohn’s Colitis2019137846855[7].10.1093/ecco‑jcc/jjy207
    [Google Scholar]
  41. DiederenK. LiJ.V. DonachieG.E. de MeijT.G. de WaartD.R. HakvoortT.B.M. KindermannA. WagnerJ. AuyeungV. te VeldeA.A. HeinsbroekS.E.M. BenningaM.A. KinrossJ. WalkerA.W. de JongeW.J. SeppenJ. Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease.Sci. Rep.20201011887910.1038/s41598‑020‑75306‑z33144591
    [Google Scholar]
  42. GkikasK. GerasimidisK. MillingS. IjazU.Z. HansenR. RussellR.K. Dietary strategies for maintenance of clinical remission in inflammatory bowel diseases: Are we there yet?Nutrients2020127201810.3390/nu1207201832645980
    [Google Scholar]
  43. MarinoL.V. AshtonJ.J. BeattieR.M. The impact of national lockdown on nutritional status of children with inflammatory bowel disease.J. Hum. Nutr. Diet.202134465665910.1111/jhn.1286233560555
    [Google Scholar]
  44. YouS. MaY. YanB. PeiW. WuQ. DingC. HuangC. The promotion mechanism of prebiotics for probiotics: A review.Front. Nutr.20229100051710.3389/fnut.2022.1000517
    [Google Scholar]
  45. NoriW. AkramN.N. Al-KaabiM.M. Probiotics in women and pediatrics health: A narrative review.Al-Anbar Med. J.2023191101610.33091/amj.2023.138442.1021
    [Google Scholar]
  46. KalioraA.C. Nutrition in inflammatory bowel diseases: Is there a role?Best Pract. Res. Clin. Gastroenterol.202362-6310182710.1016/j.bpg.2023.101827
    [Google Scholar]
  47. LiS. XuK. ChengY. ChenL. YiA. XiaoZ. ZhaoX. ChenM. TianY. MengW. TangZ. ZhouS. RuanG. WeiY. The role of complex interactions between the intestinal flora and host in regulating intestinal homeostasis and inflammatory bowel disease.Front. Microbiol.202314118845510.3389/fmicb.2023.1188455
    [Google Scholar]
  48. RoyS. DhaneshwarS. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives.World J. Gastroenterol.202329142078210010.3748/wjg.v29.i14.2078
    [Google Scholar]
  49. DuZ. LiJ. LiW. FuH. DingJ. RenG. ZhouL. PiX. YeX. Effects of prebiotics on the gut microbiota in vitro associated with functional diarrhea in children.Front. Microbiol.202314123384010.3389/fmicb.2023.123384037720150
    [Google Scholar]
  50. SoldiS. VasileiadisS. LohnerS. UggeriF. PuglisiE. MolinariP. DonnerE. SielandC. DecsiT. SailerM. TheisS. Prebiotic supplementation over a cold season and during antibiotic treatment specifically modulates the gut microbiota composition of 3-6 year-old children.Benef. Microbes201910325326410.3920/BM2018.011630776899
    [Google Scholar]
  51. LiuX. WuY. LiF. ZhangD. Dietary fiber intake reduces risk of inflammatory bowel disease: Result from a meta-analysis.Nutr. Res.201535975375810.1016/j.nutres.2015.05.02126126709
    [Google Scholar]
  52. AlgieriF. Garrido-MesaJ. VezzaT. Rodríguez-SojoM.J. Rodríguez-CabezasM.E. OlivaresM. GarcíaF. GálvezJ. MorónR. Rodríguez-NogalesA. Intestinal anti-inflammatory effects of probiotics in DNBS-colitis via modulation of gut microbiota and microRNAs.Eur. J. Nutr.20216052537255110.1007/s00394‑020‑02441‑833216193
    [Google Scholar]
  53. VinderolaG. Pérez-MarcG. Fermented foods and probiotics for children. The importance of knowing their microbiological differences.Arch. Argent. Pediatr.202111915661[1].33458982
    [Google Scholar]
  54. OlveiraG. González-MoleroI. An update on probiotics, prebiotics and symbiotics in clinical nutrition.Endocrinol. Nutr.201663948249410.1016/j.endonu.2016.07.00627633133
    [Google Scholar]
  55. MilnerE. StevensB. AnM. LamV. AinsworthM. DihleP. StearnsJ. DombrowskiA. RegoD. SegarsK. Utilizing probiotics for the prevention and treatment of gastrointestinal diseases.Front. Microbiol.20211268995810.3389/fmicb.2021.68995834434175
    [Google Scholar]
  56. HassanW.N.M. Al-kaabiM.M. AkramN.N. KassimM.A.K. PantaziA.C. Probiotics for inflammatory bowel disease: A deep dive into their impact on disease course and associated health risks.Curr. Med. Chem.202431304807482510.2174/010929867331486124042907235238693730
    [Google Scholar]
  57. PagniniC. Di PaoloM.C. UrgesiR. PallottaL. FanelloG. GrazianiM.G. Delle FaveG. Safety and potential role of Lactobacillus rhamnosus GG administration as monotherapy in ulcerative colitis patients with mild–moderate clinical activity.Microorganisms2023116138110.3390/microorganisms1106138137374884
    [Google Scholar]
  58. ChengF.S. PanD. ChangB. JiangM. SangL.X. Probiotic mixture VSL#3: An overview of basic and clinical studies in chronic diseases.World J. Clin. Cases2020881361138410.12998/wjcc.v8.i8.136132368530
    [Google Scholar]
  59. ChaiyasutC. SivamaruthiB.S. LailerdN. SirilunS. ThangaleelaS. KhongtanS. BharathiM. KesikaP. SaeleeM. ChoeisoongnernT. FukngoenP. PeerajanS. SittiprapapornP. Influence of Bifidobacterium breve on the glycaemic control, lipid profile and microbiome of type 2 diabetic subjects: A preliminary randomized clinical trial.Pharmaceuticals 202316569510.3390/ph1605069537242478
    [Google Scholar]
  60. XuH. MaC. ZhaoF. ChenP. LiuY. SunZ. CuiL. KwokL.Y. ZhangH. Adjunctive treatment with probiotics partially alleviates symptoms and reduces inflammation in patients with irritable bowel syndrome.Eur. J. Nutr.20216052553256510.1007/s00394‑020‑02437‑433225399
    [Google Scholar]
  61. XuH.L. ZouL.L. ChenM. WangH. ShenW.M. ZhengQ.H. CuiW-Y. Efficacy of probiotic adjuvant therapy for irritable bowel syndrome in children: A systematic review and meta-analysis.PLoS One2021168e025516010.1371/journal.pone.0255160
    [Google Scholar]
  62. HenkerJ. MüllerS. LaassM. SchreinerA. SchulzeJ. Probiotic Escherichia coli Nissle 1917 (EcN) for successful remission maintenance of ulcerative colitis in children and adolescents: An open-label pilot study.Z. Gastroenterol.200846987487510.1055/s‑2008‑102746318810672
    [Google Scholar]
  63. KruisW. SchützE. FricP. FixaB. JudmaierG. StolteM. Double‐blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis.Aliment. Pharmacol. Ther.199711585385810.1046/j.1365‑2036.1997.00225.x9354192
    [Google Scholar]
  64. KruisW. FričP. PokrotnieksJ. LukásM. FixaB. KascákM. KammM.A. WeismuellerJ. BeglingerC. StolteM. WolffC. SchulzeJ. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine.Gut200453111617162310.1136/gut.2003.03774715479682
    [Google Scholar]
  65. RembackenB.J. SnellingA.M. HawkeyP.M. ChalmersD.M. AxonA.T.R. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: A randomised trial.Lancet1999354917963563910.1016/S0140‑6736(98)06343‑010466665
    [Google Scholar]
  66. LosurdoG IannoneA ContaldoA IerardiE LeoA Di PrincipiM. Escherichia coli Nissle 1917 in ulcerative colitis treatment: Systematic review and meta-analysis. J. Gastrointestin Liver Dis201524449950510.15403/jgld.2014.1121.244.ecn.
    [Google Scholar]
  67. OlivaS. Di NardoG. FerrariF. MallardoS. RossiP. PatriziG. CucchiaraS. StronatiL. Randomised clinical trial: The effectiveness of Lactobacillus reuteri ATCC 55730 rectal enema in children with active distal ulcerative colitis.Aliment. Pharmacol. Ther.201235332733410.1111/j.1365‑2036.2011.04939.x22150569
    [Google Scholar]
  68. KaurL. GordonM. BainesP.A. Iheozor-EjioforZ. SinopoulouV. AkobengA.K. Probiotics for induction of remission in ulcerative colitis.Cochrane Database Syst. Rev.202033CD00557310.1002/14651858.CD005573.
    [Google Scholar]
  69. TurnerD. RuemmeleF.M. Orlanski-MeyerE. GriffithsA.M. de CarpiJ.M. BronskyJ. VeresG. AloiM. StrisciuglioC. BraeggerC.P. AssaA. RomanoC. HusseyS. StantonM. PakarinenM. de RidderL. KatsanosK. CroftN. Navas-LópezV. WilsonD.C. LawrenceS. RussellR.K. Management of paediatric ulcerative colitis, Part 1.J. Pediatr. Gastroenterol. Nutr.201867225729110.1097/MPG.0000000000002035
    [Google Scholar]
  70. BousvarosA. GuandaliniS. BaldassanoR.N. BotelhoC. EvansJ. FerryG.D. GoldinB. HartiganL. KugathasanS. LevyJ. MurrayK.F. Oliva-HemkerM. RoshJ.R. ToliaV. ZholudevA. VanderhoofJ.A. HibberdP.L. A randomized, double-blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease.Inflamm. Bowel Dis.200511983383910.1097/01.MIB.0000175905.00212.2c16116318
    [Google Scholar]
  71. BoiceanA. BirlutiuV. IchimC. AndercoP. BirsanS. Fecal microbiota transplantation in inflammatory bowel disease.Biomedicines2023114101610.3390/biomedicines1104101637189634
    [Google Scholar]
  72. ChoiH.H. ChoY.S. Fecal microbiota transplantation: Current applications, effectiveness, and future perspectives.Clin. Endosc.201649325726510.5946/ce.2015.11726956193
    [Google Scholar]
  73. XuM.Q. CaoH.L. WangW.Q. WangS. CaoX.C. YanF. WangB.M. Fecal microbiota transplantation broadening its application beyond intestinal disorders.World J. Gastroenterol.201521110211110.3748/wjg.v21.i1.10225574083
    [Google Scholar]
  74. DrekonjaD. ReichJ. GezahegnS. GreerN. ShaukatA. MacDonaldR. RutksI. WiltT.J. Fecal microbiota transplantation for clostridium difficile infection a systematic review.Ann. Intern. Med.2015162963063810.7326/M14‑269325938992
    [Google Scholar]
  75. ColmanR.J. RubinD.T. Fecal microbiota transplantation as therapy for inflammatory bowel disease: A systematic review and meta-analysis.J. Crohn’s Colitis20148121569158110.1016/j.crohns.2014.08.006
    [Google Scholar]
  76. BénardM.V. de BruijnC.M.A. FennemanA.C. WortelboerK. ZeevenhovenJ. RethansB. HerremaH.J. van GoolT. NieuwdorpM. BenningaM.A. PonsioenC.Y. Challenges and costs of donor screening for fecal microbiota transplantations.PLoS One20221710e027632310.1371/journal.pone.027632336264933
    [Google Scholar]
  77. MaY. LiuJ. RhodesC. NieY. ZhangF. Ethical issues in fecal microbiota transplantation in practice.Am. J. Bioeth.2017175344510.1080/15265161.2017.129924028430065
    [Google Scholar]
  78. WangY. RenR. SunG. PengL. TianY. YangY. Pilot study of cytokine changes evaluation after fecal microbiota transplantation in patients with ulcerative colitis.Int. Immunopharmacol.20208510666110.1016/j.intimp.2020.10666132563025
    [Google Scholar]
  79. NishidaA. InoueR. InatomiO. BambaS. NaitoY. AndohA. Gut microbiota in the pathogenesis of inflammatory bowel disease.Clin. J. Gastroenterol.201811111010.1007/s12328‑017‑0813‑529285689
    [Google Scholar]
  80. MichailidisL. CurrierA.C. LeM. FlomenhoftD.R. Adverse events of fecal microbiota transplantation: A meta-analysis of high-quality studies.Ann. Gastroenterol.2021346802814[6].34815646
    [Google Scholar]
  81. SuskindD.L. SinghN. NielsonH. WahbehG. Fecal microbial transplant via nasogastric tube for active pediatric ulcerative colitis.J. Pediatr. Gastroenterol. Nutr.2015601272910.1097/MPG.000000000000054425162366
    [Google Scholar]
  82. KellermayerR. Nagy-SzakalD. HarrisA.R. LunaR.A. PitashnyM. SchadyD. MirS.A.V. LopezM.E. GilgerM.A. BelmontJ. HollisterE.B. VersalovicJ. Serial fecal microbiota transplantation alters mucosal gene expression in pediatric ulcerative colitis.Am. J. Gastroenterol.2015110460460610.1038/ajg.2015.1925853207
    [Google Scholar]
  83. PaiN. PopovJ. HillL. HartungE. Protocol for a double-blind, randomised, placebo-controlled pilot study for assessing the feasibility and efficacy of faecal microbiota transplant in a paediatric Crohn’s disease population: PediCRaFT Trial.BMJ Open2019911e03012010.1136/bmjopen‑2019‑03012031784432
    [Google Scholar]
  84. HsuM. TunK.M. BatraK. HaqueL. VongsavathT. HongA.S. Safety and efficacy of fecal microbiota transplantation in treatment of inflammatory bowel disease in the pediatric population: A systematic review and meta-analysis.Microorganisms2023115127210.3390/microorganisms11051272
    [Google Scholar]
  85. ImdadA. NicholsonM.R. Tanner-SmithE.E. ZackularJ.P. Gomez-DuarteO.G. BeaulieuD.B. AcraS. Fecal transplantation for treatment of inflammatory bowel disease.Cochrane Libr.201820181110.1002/14651858.CD012774.pub2
    [Google Scholar]
  86. ZhangY. ZhangJ. PanZ. HeX. Effects of washed fecal bacteria transplantation in sleep quality, stool features and autism symptomatology: A chinese preliminary observational study.Neuropsychiatr. Dis. Treat.2022181165117310.2147/NDT.S35523335719863
    [Google Scholar]
  87. DossajiZ. KhattakA. TunK.M. HsuM. BatraK. HongA.S. Efficacy of fecal microbiota transplant on behavioral and gastrointestinal symptoms in pediatric autism: A systematic review.Microorganisms202311380610.3390/microorganisms1103080636985379
    [Google Scholar]
  88. FetterK. WeigelM. OttB. FritzenwankerM. StrickerS. de LaffolieJ. HainT. The microbiome landscape in pediatric Crohn’s disease and therapeutic implications.Gut Microbes2023152224701910.1080/19490976.2023.224701937614093
    [Google Scholar]
  89. HuK.A. GubatanJ. Gut microbiome–based therapeutics in inflammatory bowel disease.Clin. Transl. Discov.202332e18210.1002/ctd2.182
    [Google Scholar]
  90. VerburgtC.M. HeutinkW.P. KuilboerL.I.M. DickmannJ.D. van Etten-JamaludinF.S. BenningaM.A. de JongeW.J. Van LimbergenJ.E. TabbersM.M. Antibiotics in pediatric inflammatory bowel diseases: A systematic review.Expert Rev. Gastroenterol. Hepatol.202115889190810.1080/17474124.2021.194095634148466
    [Google Scholar]
  91. LedderO. TurnerD. Antibiotics in IBD: Still a role in the biological era?Inflamm. Bowel Dis.20182481676168810.1093/ibd/izy06729722812
    [Google Scholar]
  92. SprockettD. FischerN. BonehR.S. TurnerD. KierkusJ. SladekM. EscherJ.C. WineE. YerushalmiB. DiasJ.A. ShaoulR. KoriM. SnapperS.B. HolmesS. BousvarosA. LevineA. RelmanD.A. Treatment-specific composition of the gut microbiota is associated with disease remission in a pediatric crohn’s disease cohort.Inflamm. Bowel Dis.201925121927193810.1093/ibd/izz13031276165
    [Google Scholar]
  93. SahuP. KediaS. VuyyuruS.K. BajajA. MarkandeyM. SinghN. SinghM. KanteB. KumarP. RanjanM. SahniP. PanwarR. SharmaR. DasP. MakhariaG. TravisS.P.L. AhujaV. Randomised clinical trial: Exclusive enteral nutrition versus standard of care for acute severe ulcerative colitis.Aliment. Pharmacol. Ther.202153556857610.1111/apt.1624933440046
    [Google Scholar]
  94. Di ChioT. SokollikC. PeroniD.G. HartL. SimonettiG. Righini-GrunderF. BorrelliO. Nutritional aspects of pediatric gastrointestinal diseases.Nutrients2021136210910.3390/nu1306210934205445
    [Google Scholar]
  95. ShahB.R. LiB. Al SabbahH. XuW. MrázJ. Effects of prebiotic dietary fibers and probiotics on human health: With special focus on recent advancement in their encapsulated formulations.Trends Food Sci. Technol.202010217819210.1016/j.tifs.2020.06.01032834500
    [Google Scholar]
  96. KuangR. BinionD.G. Should high-fiber diets be recommended for patients with inflammatory bowel disease?Curr. Opin. Gastroenterol.202238216817210.1097/MOG.000000000000081035098939
    [Google Scholar]
  97. BagchiD DownsBW Microbiome, Immunity, Digestive Health and Nutrition:Epidemiology, Pathophysiology, Prevention and TreatmentAcademic Press202210.1016/C2019‑0‑04103‑90
    [Google Scholar]
  98. Berenblum TobiC. BuchbinderM. Physicians’ explanatory models of pediatric inflammatory bowel disease: A qualitative interview study.Qual. Health Res.202334655238127803
    [Google Scholar]
  99. ZhangX.F. GuanX.X. TangY.J. SunJ.F. WangX.K. WangW.D. FanJ-M. Clinical effects and gut microbiota changes of using probiotics, prebiotics or synbiotics in inflammatory bowel disease: A systematic review and meta-analysis.Eur. J. Nutr.202160528552875[5].10.1007/s00394‑021‑02503‑5
    [Google Scholar]
  100. HuangC. HaoW. WangX. ZhouR. LinQ. Probiotics for the treatment of ulcerative colitis: A review of experimental research from 2018 to 2022.Front. Microbiol.202314121127110.3389/fmicb.2023.1211271
    [Google Scholar]
  101. HuY. YeZ. SheY. LiL. WuM. QinK. LiY. HeH. HuZ. YangM. LuF. YeQ. Efficacy and safety of probiotics combined with traditional chinese medicine for ulcerative colitis: A systematic review and meta-analysis.Front. Pharmacol.20221384496110.3389/fphar.2022.844961
    [Google Scholar]
  102. ChenM. FengY. LiuW. Efficacy and safety of probiotics in the induction and maintenance of inflammatory bowel disease remission: A systematic review and meta-analysis.Ann. Palliat. Med.20211011118211182910.21037/apm‑21‑299634872306
    [Google Scholar]
  103. VakadarisG. StefanisC. GiorgiE. BrouvalisM. VoidarouC.C. KourkoutasY. TsigalouC. BezirtzoglouE. The role of probiotics in inducing and maintaining remission in crohn’s disease and ulcerative colitis: A systematic review of the literature.Biomedicines202311249410.3390/biomedicines1102049436831029
    [Google Scholar]
  104. HassanDS HasaryHJ HassanZS Role of probiotics in the prevention and treatment of GIT cancers: Updated review. Al-Rafidain J. Med. Sci.202345259
    [Google Scholar]
  105. KandalaiS. LiH. ZhangN. PengH. ZhengQ. The human microbiome and cancer: A diagnostic and therapeutic perspective.Cancer Biol. Ther.2023241224008410.1080/15384047.2023.224008437498047
    [Google Scholar]
  106. MazziottaC. TognonM. MartiniF. TorreggianiE. RotondoJ.C. Probiotics mechanism of action on immune cells and beneficial effects on human health.Cells202312118410.3390/cells1201018436611977
    [Google Scholar]
  107. NoriW. KassimM.A.K. PantaziA.C. Probiotics role in reducing GIT cancer-related therapy side effects.Al-Rafidain J. Med. Sci.2023511411510.54133/ajms.v5i.215
    [Google Scholar]
  108. SabitH. KassabA. AlaaD. MohamedS. Abdel-GhanyS. MansyM. SaidO.A. KhalifaM.A. HafizH. AbushadyA.M. The effect of probiotic supplementation on the gut–brain axis in psychiatric patients.Curr. Issues Mol. Biol.20234554080409910.3390/cimb4505026037232729
    [Google Scholar]
  109. BoiceanA. BratuD. FleacaS.R. VasileG. ShellyL. BirsanS. BacilaC. HaseganA. Exploring the potential of fecal microbiota transplantation as a therapy in tuberculosis and inflammatory bowel disease.Pathogens2023129114910.3390/pathogens12091149
    [Google Scholar]
  110. RafeyA. JahanS. FarooqU. AkhtarF. IrshadM. NizamuddinS. ParveenA. Antibiotics associated with clostridium difficile infection.Cureus2023155e3902937323360
    [Google Scholar]
  111. MamunA.A. MahmudionoT. YudhastutiR. TriatmajaN.T. ChenH.L. Effectiveness of food-based intervention to improve the linear growth of children under five: A systematic review and meta-analysis.Nutrients20231511243010.3390/nu15112430
    [Google Scholar]
  112. OrelR. ReberšakL.V. Clinical effects of prebiotics in pediatric population.Indian Pediatr.201653121083108928064261
    [Google Scholar]
  113. SahleZ. EngidayeG. Shenkute GebreyesD. AdenewB. AbebeT.A. Fecal microbiota transplantation and next-generation therapies: A review on targeting dysbiosis in metabolic disorders and beyond.SAGE Open Med.2024122050312124125748610.1177/2050312124125748638826830
    [Google Scholar]
  114. ChișA.A. RusL.L. MorgovanC. ArseniuA.M. FrumA. Vonica-ȚincuA.L. GligorF.G. MureșanM.L. DobreaC.M. Microbial resistance to antibiotics and effective antibiotherapy.Biomedicines2022105112110.3390/biomedicines1005112135625857
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882356553250306050102
Loading
/content/journals/nemj/10.2174/0102506882356553250306050102
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test