Skip to content
2000
Volume 5, Issue 1
  • ISSN: 0250-6882
  • E-ISSN: 0250-6882

Abstract

It has been estimated that by 2030, the number of patients with diabetes is expected to rise to 552 million. Moreover, an estimated 20 million new cancer cases were reported in 2022, and 64 million people worldwide are currently suffering from heart failure. Recently, there has been an increasing interest regarding the prescription of a drug that was approved for use in May, 2014, which is called empagliflozin. Up to now, limited data is available on the efficacy, safety, and side effects of empagliflozin against a variety of diseases, including diabetes, heart failure, and cancer. Therefore, this study aimed to gather relevant data on empagliflozin by searching electronic databases, such as Web of Science, Scopus, Pubmed, and Cochrane Library, through October 9th, 2024. One hundred thirty-eight relevant studies, including review articles, clinical trials, and case reports, were assessed. It was found that orally, once daily use of empagliflozin, in addition to the glucose-lowering effect, suppresses inflammation and improves diastolic function. Empagliflozin inhibits breast cancer stemness by inactivating transcription factors and enzyme pyruvate kinase M2 enhanced miR-128-3p expression. By inhibiting the sodium-glucose cotransporter, the drug has a well-known safety and efficacy in patients with breast cancer, type 1 or 2 diabetes, acute septic renal injury, renal disease, and heart failure. Regarding efficacy, empagliflozin acts as an angiotensin-converting enzyme inhibitor, angiotensin receptor blocker, sodium-glucose cotransporter type 2 inhibitor, vascular resistance prevention, and albuminuria-lowering agent. A recently published observational study confirmed the efficacy and safety of empagliflozin in improving kidney function and glycemic profile and reducing cardiovascular events in diabetic patients with advanced chronic kidney disease. In addition, empagliflozin is efficient as a blood pressure-lowering agent in patients with hypertension and those at higher risk of cardiovascular disease. Furthermore, for patients with diabetes and obesity, empagliflozin reduces the progression of kidney disease and improves clinical conditions in those with high blood pressure. It has a beneficial effect on hemoglobin A1c (HbA1c), body weight, glucose variability, and total daily insulin use in people with type 1 diabetes. Itching or redness of the genital area, genital infection, hematuria, difficulty in urination, bladder pain, painful sexual intercourse, peripheral amputations, and Fournier’s gangrene (rarely informed adverse effects) are the most commonly reported side effects. Additionally, pancreatitis, bad odor, and suicide attempts were recorded in some published case reports. Further evidence-based polypharmacological benefits studies' of empagliflozin associated with its nephroprotective, cardioprotective, and glucose-lowering effects and in cancer were reported to be advantageous.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/nemj/10.2174/0102506882328936250115065100
2024-01-01
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/nemj/5/1/NEMJ-5-E02506882328936.html?itemId=/content/journals/nemj/10.2174/0102506882328936250115065100&mimeType=html&fmt=ahah

References

  1. MaglianoD. BoykoE.J. IDF diabetes atlas.10th ed.International Diabetes Federation202116
    [Google Scholar]
  2. HossainM.J. Al-MamunM. IslamM.R. Diabetes mellitus, the fastest growing global public health concern: Early detection should be focused.Health Sci. Rep.202473e200410.1002/hsr2.200438524769
    [Google Scholar]
  3. WhitingD.R. GuariguataL. WeilC. ShawJ. IDF Diabetes Atlas: Global estimates of the prevalence of diabetes for 2011 and 2030.Diabetes Res. Clin. Pract.201194331132110.1016/j.diabres.2011.10.02922079683
    [Google Scholar]
  4. SavareseG. BecherP.M. LundL.H. SeferovicP. RosanoG.M.C. CoatsA.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology.Cardiovasc. Res.2023118173272328710.1093/cvr/cvac01335150240
    [Google Scholar]
  5. HuangQ.M. ShenD. GaoJ. ChenH. XieJ.H. YanH.Y. WuB. LiZ.H. LiuG. MaoC. Association of weight change with all-cause and cause-specific mortality: An age-stratified analysis.BMC Med.202422143810.1186/s12916‑024‑03665‑939379988
    [Google Scholar]
  6. FalaL. Jardiance (Empagliflozin), an SGLT2 inhibitor, Receives fda approval for the treatment of patients with type 2 diabetes.Am. Health Drug Benefits20158Spec Feature929526629271
    [Google Scholar]
  7. Abu KhalafR. Exploring Natural Products as a Source for Antidiabetic Lead Compounds and Possible Lead Optimization.Curr. Top. Med. Chem.201616232549256110.2174/156802661666616041412360227086794
    [Google Scholar]
  8. NallaL.V. KhairnarA. Empagliflozin mediated miR-128-3p upregulation promotes differentiation of hypoxic cancer stem-like cells in breast cancer.Eur. J. Pharmacol.202394317556510.1016/j.ejphar.2023.17556536739077
    [Google Scholar]
  9. MinJ. WuL. LiuY. SongG. DengQ. JinW. YuW. AbudureyimuM. PeiZ. RenJ. Empagliflozin attenuates trastuzumab-induced cardiotoxicity through suppression of DNA damage and ferroptosis.Life Sci.202331212120710.1016/j.lfs.2022.12120736403642
    [Google Scholar]
  10. DutkaM. BobińskiR. FrancuzT. GarczorzW. ZimmerK. IlczakT. ĆwiertniaM. HajdugaM.B. SGLT-2 inhibitors in cancer treatment—mechanisms of action and emerging new perspectives.Cancers20221423581110.3390/cancers1423581136497303
    [Google Scholar]
  11. KimD. JangG. HwangJ. WeiX. KimH. SonJ. RheeS.J. YunK.H. OhS.K. OhC.M. ParkR. Combined therapy of low-Dose angiotensin receptor–neprilysin inhibitor and sodium–glucose cotransporter-2 inhibitor prevents doxorubicin-induced cardiac dysfunction in rodent model with minimal adverse effects.Pharmaceutics20221412262910.3390/pharmaceutics1412262936559124
    [Google Scholar]
  12. ChiangC.H. ChiangC.H. ChiangC.H. MaK.S.K. PengC.Y. HsiaY.P. HorngC.S. ChenC.Y. ChangY.C. SeeX.Y. ChenY.J. WangS.S. Suero-AbreuG.A. PetersonL.R. ThavendiranathanP. ArmandP. PengC.M. ShiahH.S. NeilanT.G. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure and mortality in patients with cancer.Heart2023109647047710.1136/heartjnl‑2022‑32154536351793
    [Google Scholar]
  13. Tolou-GhamariZ. Review of Association Between Urinary Tract Infections and Immunosuppressive Drugs after Heart Transplantation.Rev. Recent Clin. Trials202419Epub ahead of print10.2174/011574887131544524091609152839323339
    [Google Scholar]
  14. Tolou-GhamariZ. A Review of the Association between Infections, Seizures, and Drugs.Cent. Nerv. Syst. Agents Med. Chem.2024Epub ahead of print10.2174/011871524928893224041607163638676494
    [Google Scholar]
  15. Tolou GhamariZ. PalizbanA.A. Tacrolimus pharmacotherapy: Infectious complications and toxicity in organ transplant recipients; An updated review.Curr. Drug Res. Rev.2023Epub ahead of print10.2174/012589977525932623121207324038151846
    [Google Scholar]
  16. Tolou-GhamariZ. Tacrolimus and Cyclosporin Pharmacotherapy, Detection Methods, Cytochrome P450 Enzymes after Heart Transplantation.Cardiovasc. Hematol. Agents Med. Chem.202422210611310.2174/187152572166623072615002137496131
    [Google Scholar]
  17. Tolou-GhamariZ. PalizbanA.A. Laboratory Monitoring of Cyclosporine Pre-Dose Concentration (C 0) after Kidney Transplantation in Isfahan.IJMS20032828185
    [Google Scholar]
  18. Tolou-GhamariZ. PalizbanA.A. Michael TredgerJ. Clinical monitoring of tacrolimus after liver transplantation using pentamer formation assay and microparticle enzyme immunoassay.Drugs R D.200451172210.2165/00126839‑200405010‑0000314725486
    [Google Scholar]
  19. ShaygannejadV. DehnaviS.R. AshtariF. KarimiS. DehghaniL. MeamarR. Tolou-GhamariZ. Study of type a and B behavior patterns in patients with multiple sclerosis in an Iranian population.Int. J. Prev. Med.20134Suppl. 2S279S28323776738
    [Google Scholar]
  20. GhamariZ.T. Prevalence of stomach cancer in isfahan province, Iran.Gulf J. Oncolog.2018128424530344133
    [Google Scholar]
  21. HirumaS. ShigiyamaF. HisatakeS. MizumuraS. ShiragaN. HoriM. IkedaT. HiroseT. KumashiroN. A prospective randomized study comparing effects of empagliflozin to sitagliptin on cardiac fat accumulation, cardiac function, and cardiac metabolism in patients with early-stage type 2 diabetes: The ASSET study.Cardiovasc. Diabetol.20212013210.1186/s12933‑021‑01228‑333530982
    [Google Scholar]
  22. FerreiraJ.P. VermaS. FitchettD. OfstadA.P. LauerS. ZwienerI. GeorgeJ. WannerC. ZinmanB. InzucchiS.E. Metabolic syndrome in patients with type 2 diabetes and atherosclerotic cardiovascular disease: A post hoc analyses of the EMPA-REG OUTCOME trial.Cardiovasc. Diabetol.202019120010.1186/s12933‑020‑01174‑633243221
    [Google Scholar]
  23. FujikiS. IijimaK. NakagawaY. TakahashiK. OkabeM. KusanoK. OwadaS. KondoY. TsujitaK. ShimizuW. TomitaH. WatanabeM. ShodaM. WatanabeM. TokanoT. MuroharaT. KaneshiroT. KatoT. HayashiH. MaemuraK. NiwanoS. UmemotoT. YoshidaH. OtaK. TanakaT. KitamuraN. NodeK. MinaminoT. Effect of empagliflozin on ventricular arrhythmias in patients with type 2 diabetes treated with an implantable cardioverter-defibrillator: The EMPA-ICD trial.Cardiovasc. Diabetol.202423122410.1186/s12933‑024‑02309‑938943159
    [Google Scholar]
  24. ZeidanB.S.Jr BoaduC. HernandezA. FrunziJ. AdetulaI. Adverse side effects: Empagliflozin-related acute pancreatitis case report.Cureus20201212e1232510.7759/cureus.1232533520523
    [Google Scholar]
  25. Bersoff-MatchaS.J. ChamberlainC. CaoC. KortepeterC. ChongW.H. Fournier gangrene associated with sodium-glucose cotransporter-2 inhibitors: A review of spontaneous postmarketing cases.Ann. Intern. Med.20191701176476910.7326/M19‑008531060053
    [Google Scholar]
  26. ScheenA.J. Cardiovascular effects of new oral glucose-lowering agents: DPP-4 and SGLT-2 inhibitors.Circ. Res.2018122101439145910.1161/CIRCRESAHA.117.31158829748368
    [Google Scholar]
  27. SizarO. PodderV. TalatiR. Empagliflozin.Treasure Island, FL, USAStatPearls Publishing2021
    [Google Scholar]
  28. RosenstockJ. MarquardJ. LaffelL.M. NeubacherD. KaspersS. CherneyD.Z. ZinmanB. SkylerJ.S. GeorgeJ. SoleymanlouN. PerkinsB.A. Empagliflozin as adjunctive to insulin therapy in type 1 diabetes: The EASE trials.Diabetes Care201841122560256910.2337/dc18‑174930287422
    [Google Scholar]
  29. UyaroğluO. An interesting experience with empagliflozin: Unidentified body odor.Acta Endocrinol.202117455455610.4183/aeb.2021.55435747857
    [Google Scholar]
  30. HasanF.M. AlsahliM. GerichJ.E. SGLT2 inhibitors in the treatment of type 2 diabetes.Diabetes Res. Clin. Pract.2014104329732210.1016/j.diabres.2014.02.01424735709
    [Google Scholar]
  31. KohanD.E. FiorettoP. TangW. ListJ.F. Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control.Kidney Int.201485496297110.1038/ki.2013.35624067431
    [Google Scholar]
  32. WuJ.H.Y. FooteC. BlomsterJ. ToyamaT. PerkovicV. SundströmJ. NealB. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: A systematic review and meta-analysis.Lancet Diabetes Endocrinol.20164541141910.1016/S2213‑8587(16)00052‑827009625
    [Google Scholar]
  33. SchneiderA LengenfelderB Attempted suicide with the SGLT2 inhibitor empagliflozin saves patient's life.Diabetologe.201814299100
    [Google Scholar]
  34. Tolou_GhamariZ. A Quick Review of SGLT2 Inhibitor Empagliflozin in Clinical Practice.J Pharma Reports2018610105
    [Google Scholar]
  35. NeelandI.J. SalahuddinU. McGuireD.K. A Safety Evaluation of Empagliflozin for the Treatment of Type 2 Diabetes.Expert Opin. Drug Saf.201615339340210.1517/14740338.2016.113590026695551
    [Google Scholar]
  36. ImprialosK.P. BoutariC. StavropoulosK. DoumasM. KaragiannisA.I. Stroke paradox with SGLT-2 inhibitors: A play of chance or a viscosity-mediated reality?J. Neurol. Neurosurg. Psychiatry201788324925310.1136/jnnp‑2016‑31470427895093
    [Google Scholar]
  37. DonnanJ.R. GrandyC.A. ChibrikovE. MarraC.A. Aubrey-BasslerK. JohnstonK. SwabM. HacheJ. CurnewD. NguyenH. GambleJ.M. Comparative safety of the sodium glucose co-transporter 2 (SGLT2) inhibitors: A systematic review and meta-analysis.BMJ Open201991e02257710.1136/bmjopen‑2018‑02257730813108
    [Google Scholar]
  38. OttawaO.N. Clinical Review Report: Empagliflozin and Metformin Fixed-Dose Combination SynjardyCommon Drug ReviewCanadian Agency for Drugs and Technologies in HealthOttawa (ON)20171630427620
    [Google Scholar]
  39. JohnstonR. UthmanO. CumminsE. ClarC. RoyleP. ColquittJ. TanB.K. CleggA. ShantikumarS. CourtR. O’HareJ.P. McGraneD. HoltT. WaughN. Canagliflozin, dapagliflozin and empagliflozin monotherapy for treating type 2 diabetes: Systematic review and economic evaluation.Health Technol. Assess.2017212121810.3310/hta2102028105986
    [Google Scholar]
  40. VallonV. Molecular determinants of renal glucose reabsorption. Focus on “Glucose transport by human renal Na + / d -glucose cotransporters SGLT1 and SGLT2”.Am. J. Physiol. Cell Physiol.20113001C6C810.1152/ajpcell.00444.201021048164
    [Google Scholar]
  41. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.10784331518657
    [Google Scholar]
  42. GBD 2017 Disease and injury incidence and prevalence collaborators.Global, regional and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and 2017.2017
    [Google Scholar]
  43. ChanGCK Kit-ChungNgJ ChowKM SzetoCC SGLT2 inhibitors reduce adverse kidney and cardiovascular events in patients with advanced diabetic kidney disease: A population-based propensity score-matched cohort study.Diabe. Res. Clini. Prac.202319511020010.1016/j.diabres.2022.110200
    [Google Scholar]
  44. AamirA.H. RajaU.Y. QureshiF.M. AsgharA. MaharS.A. AhmedI. GhaffarT. ZafarJ. HasanM.I. RiazA. RazaS.A. KhosaI.A. KhanJ. BaqarJ.B. Safety and efficacy of Empagliflozin in Pakistani Muslim patients with type 2 diabetes (SAFE-PAK); a randomized clinical trial.BMC Endocr. Disord.202222129510.1186/s12902‑022‑01213‑136443769
    [Google Scholar]
  45. KawamoriR. HanedaM. SuzakiK. ChengG. ShikiK. MiyamotoY. SolimandoF. LeeC. LeeJ. GeorgeJ. Empagliflozin as add‐on to linagliptin in a fixed‐dose combination in Japanese patients with type 2 diabetes: Glycaemic efficacy and safety profile in a 52‐week, randomized, placebo‐controlled trial.Diabetes Obes. Metab.20182092200220910.1111/dom.1335229766636
    [Google Scholar]
  46. BarnettA.H. MithalA. ManassieJ. JonesR. RattundeH. WoerleH.J. BroedlU.C. Efficacy and safety of empagliflozin added to existing antidiabetes treatment in patients with type 2 diabetes and chronic kidney disease: A randomised, double-blind, placebo-controlled trial.Lancet Diabetes Endocrinol.20142536938410.1016/S2213‑8587(13)70208‑024795251
    [Google Scholar]
  47. DeFronzoR.A. LewinA. PatelS. LiuD. KasteR. WoerleH.J. BroedlU.C. Combination of empagliflozin and linagliptin as second-line therapy in subjects with type 2 diabetes inadequately controlled on metformin.Diabetes Care201538338439310.2337/dc14‑236425583754
    [Google Scholar]
  48. LingvayI. BeetzN. SennewaldR. Schuler-MetzA. BertulisJ. LoleyC. LangB. LippertC. LeeJ. ManningL.S. TeradaD. Triple fixed-dose combination empagliflozin, linagliptin, and metformin for patients with type 2 diabetes.Postgrad. Med.2020132433734510.1080/00325481.2020.175022832366156
    [Google Scholar]
  49. TanX. HuJ. Empagliflozin/Linagliptin: Combination therapy in patients with type 2 diabetes.Ann. Endocrinol.201677555756210.1016/j.ando.2015.11.00327062036
    [Google Scholar]
  50. KorbutA.I. TaskaevaI.S. BgatovaN.P. MuralevaN.A. OrlovN.B. DashkinM.V. KhotskinaA.S. ZavyalovE.L. KonenkovV.I. KleinT. KlimontovV.V. SGLT2 Inhibitor Empagliflozin and DPP4 Inhibitor Linagliptin Reactivate Glomerular Autophagy in db/db Mice, a Model of Type 2 Diabetes.Int. J. Mol. Sci.2020218298710.3390/ijms2108298732340263
    [Google Scholar]
  51. KadowakiT. NangakuM. HantelS. OkamuraT. von EynattenM. WannerC. Koitka-WeberA. Empagliflozin and kidney outcomes in Asian patients with type 2 diabetes and established cardiovascular disease: Results from the EMPA‐REG OUTCOME ® trial.J. Diabetes Investig.201910376077010.1111/jdi.1297130412655
    [Google Scholar]
  52. LuY.P. WuH.W. ZhuT. LiX.T. ZuoJ. HasanA.A. ReichetzederC. DelicD. YardB. KleinT. KrämerB.K. ZhangZ.Y. WangX.H. YinL.H. DaiY. ZhengZ.H. HocherB. Empagliflozin reduces kidney fibrosis and improves kidney function by alternative macrophage activation in rats with 5/6-nephrectomy.Biomed. Pharmacother.202215611394710.1016/j.biopha.2022.11394736411661
    [Google Scholar]
  53. GremplerR. ThomasL. EckhardtM. HimmelsbachF. SauerA. SharpD.E. BakkerR.A. MarkM. KleinT. EickelmannP. Empagliflozin, a novel selective sodium glucose cotransporter‐2 (SGLT‐2) inhibitor: Characterisation and comparison with other SGLT‐2 inhibitors.Diabetes Obes. Metab.2012141839010.1111/j.1463‑1326.2011.01517.x21985634
    [Google Scholar]
  54. van BommelE.J.M. MuskietM.H.A. van BaarM.J.B. TonneijckL. SmitsM.M. EmanuelA.L. BozovicA. DanserA.H.J. GeurtsF. HoornE.J. TouwD.J. LarsenE.L. PoulsenH.E. KramerM.H.H. NieuwdorpM. JolesJ.A. van RaalteD.H. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial.Kidney Int.202097120221210.1016/j.kint.2019.09.01331791665
    [Google Scholar]
  55. DengX. ZhangC. WangP. WeiW. ShiX. WangP. YangJ. WangL. TangS. FangY. LiuY. ChenY. ZhangY. YuanQ. ShangJ. KanQ. YangH. ManH. WangD. YuanH. Cardiovascular Benefits of Empagliflozin Are Associated With Gut Microbiota and Plasma Metabolites in Type 2 Diabetes.J. Clin. Endocrinol. Metab.202210771888189610.1210/clinem/dgac21035397165
    [Google Scholar]
  56. ZinmanB. WannerC. LachinJ.M. FitchettD. BluhmkiE. HantelS. MattheusM. DevinsT. JohansenO.E. WoerleH.J. BroedlU.C. InzucchiS.E. O E.-R. Investigators, empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N. Engl. J. Med.2015373222117212810.1056/NEJMoa150472026378978
    [Google Scholar]
  57. KowalskaK. WalczakJ. FemlakJ. MłynarskaE. FranczykB. RyszJ. Empagliflozin—A New Chance for Patients with Chronic Heart Failure.Pharmaceuticals20211514710.3390/ph1501004735056104
    [Google Scholar]
  58. GonzalezD.E. ForestoR.D. RibeiroA.B. SGLT-2 inhibitors in diabetes: A focus on renoprotection.Rev. Assoc. Med. Bras.20206666Suppl. 1s17s2410.1590/1806‑9282.66.s1.1731939531
    [Google Scholar]
  59. HüttlM. MarkovaI. MiklankovaD. ZapletalovaI. PorubaM. HaluzikM. VaněčkovaI. MalinskaH. In a prediabetic model, Empagliflozin improves hepatic lipid metabolism independently of obesity and before onset of hyperglycemia.Int. J. Mol. Sci.202122211151310.3390/ijms22211151334768942
    [Google Scholar]
  60. LeeH.C. ShiouY.L. JhuoS.J. ChangC.Y. LiuP.L. JhuangW.J. DaiZ.K. ChenW.Y. ChenY.F. LeeA.S. The sodium–glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.Cardiovasc. Diabetol.20191814510.1186/s12933‑019‑0849‑630935417
    [Google Scholar]
  61. KakuK. HanedaM. TanakaY. LeeG. ShikiK. MiyamotoY. SolimandoF. LeeJ. LeeC. GeorgeJ. Linagliptin as add‐on to empagliflozin in a fixed-dose combination in Japanese patients with type 2 diabetes: Glycaemic efficacy and safety profile in a two-part, randomized, placebo‐controlled trial.Diabetes Obes. Metab.201921113614510.1111/dom.1349630091172
    [Google Scholar]
  62. KohlerS. ZellerC. IlievH. KaspersS. Safety and Tolerability of Empagliflozin in Patients with Type 2 Diabetes: Pooled Analysis of Phase I–III Clinical Trials.Adv. Ther.20173471707172610.1007/s12325‑017‑0573‑028631216
    [Google Scholar]
  63. LinB. KoibuchiN. HasegawaY. SuetaD. ToyamaK. UekawaK. MaM. NakagawaT. KusakaH. Kim-MitsuyamaS. Glycemic control with empagliflozin, a novel selective sglt2 inhibitor, ameliorates cardiovascular injury and cognitive dysfunction in obese and type 2 diabetic mice.Cardiovasc. Diabetol.201413114810.1186/s12933‑014‑0148‑125344694
    [Google Scholar]
  64. NgK.M. LauY.M. DhandhaniaV. CaiZ.J. LeeY.K. LaiW.H. TseH.F. SiuC.W. Empagliflozin ammeliorates high glucose induced-cardiac dysfuntion in human ipsc-derived cardiomyocytes.Sci. Rep.2018811487210.1038/s41598‑018‑33293‑230291295
    [Google Scholar]
  65. LakkisJ.I. WeirM.R. Obesity and Kidney Disease.Prog. Cardiovasc. Dis.201861215716710.1016/j.pcad.2018.07.00529981350
    [Google Scholar]
  66. CohenJ.B. Hypertension in Obesity and the Impact of Weight Loss.Curr. Cardiol. Rep.201719109810.1007/s11886‑017‑0912‑428840500
    [Google Scholar]
  67. RuggenentiP. KrausB.J. InzucchiS.E. ZinmanB. HantelS. MattheusM. von EynattenM. RemuzziG. Koitka-WeberA. WannerC. Nephrotic-range proteinuria in type 2 diabetes: Effects of empagliflozin on kidney disease progression and clinical outcomes.EClinicalMedicine20224310124010.1016/j.eclinm.2021.10124035005582
    [Google Scholar]
  68. LeeY.T. HsuC.N. FuC.M. WangS.W. HuangC.C. LiL.C. Comparison of adverse kidney outcomes with empagliflozin and linagliptin use in patients with type 2 diabetic patients in a real-world setting.Front. Pharmacol.20211278137910.3389/fphar.2021.78137934992535
    [Google Scholar]
  69. PetraE. SiwyJ. VlahouA. JankowskiJ. Urine peptidome in combination with transcriptomics analysis highlights MMP7, MMP14 and PCSK5 for further investigation in chronic kidney disease.PLoS One2022171e026266710.1371/journal.pone.026266735045102
    [Google Scholar]
  70. YuristaS.R. SilljéH.H.W. Oberdorf-MaassS.U. SchoutenE.M. Pavez GianiM.G. HillebrandsJ.L. van GoorH. van VeldhuisenD.J. de BoerR.A. WestenbrinkB.D. Sodium–glucose co‐transporter 2 inhibition with empagliflozin improves cardiac function in non‐diabetic rats with left ventricular dysfunction after myocardial infarction.Eur. J. Heart Fail.201921786287310.1002/ejhf.147331033127
    [Google Scholar]
  71. TuttleK.R. LevinA. NangakuM. KadowakiT. AgarwalR. HauskeS.J. ElsäßerA. RitterI. SteublD. WannerC. WheelerD.C. Safety of empagliflozin in patients with type 2 diabetes and chronic kidney disease: pooled analysis of placebo-controlled clinical trials.Diabetes Care20224561445145210.2337/dc21‑203435472672
    [Google Scholar]
  72. AlthobaitiF.M. AlsanosiS.M. FalembanA.H. AlzahraniA.R. FatahaS.A. SalihS.O. AlrumaihA.M. AlotaibiK.N. AlthobaitiH.M. Al-GhamdiS.S. AyoubN. Efficacy and safety of empagliflozin in type 2 diabetes mellitus saudi patients as add-on to antidiabetic therapy: A prospective, open-label, observational study.J. Clin. Med.20221116476910.3390/jcm1116476936013008
    [Google Scholar]
  73. MizunoM. KunoA. YanoT. MikiT. OshimaH. SatoT. NakataK. KimuraY. TannoM. MiuraT. Empagliflozin normalizes the size and number of mitochondria and prevents reduction in mitochondrial size after myocardial infarction in diabetic hearts.Physiol. Rep.2018612e1374110.14814/phy2.1374129932506
    [Google Scholar]
  74. HammoudiN JeongD SinghR Empagliflozin Improves Left Ventricular Diastolic Dysfunction in a Genetic Model of Type 2 Diabetes.Cardiovasc. Drug. Ther.201731323324610.1007/s10557‑017‑6734‑128643218
    [Google Scholar]
  75. WannerC. HeerspinkH.J.L. ZinmanB. InzucchiS.E. Koitka-WeberA. MattheusM. HantelS. WoerleH.J. BroedlU.C. von EynattenM. GroopP.H. Empagliflozin and kidney function decline in patients with type 2 diabetes: A slope analysis from the empa-reg outcome trial.J. Am. Soc. Nephrol.201829112755276910.1681/ASN.201801010330314978
    [Google Scholar]
  76. LuY. ChangY. LiT. HanF. LiC. LiX. XueM. ChengY. MengZ. HanZ. SunB. ChenL. empagliflozin attenuates hyperuricemia by upregulation of abcg2 via ampk/akt/creb signaling pathway in type 2 diabetic mice.Int. J. Biol. Sci.202016352954210.7150/ijbs.3300732015688
    [Google Scholar]
  77. SoneH. KanekoT. ShikiK. TachibanaY. PfarrE. LeeJ. TajimaN. Efficacy and safety of empagliflozin as add‐on to insulin in japanese patients with type 2 diabetes: a randomized, double‐blind, placebo‐controlled trial.Diabetes Obes. Metab.202022341742610.1111/dom.1390931692244
    [Google Scholar]
  78. NeelandI.J. de Albuquerque RochaN. HughesC. AyersC.R. MalloyC.R. JinE.S. Effects of empagliflozin treatment on glycerol‐derived hepatic gluconeogenesis in adults with obesity: a randomized clinical trial.Obesity (Silver Spring)20202871254126210.1002/oby.2285432568464
    [Google Scholar]
  79. SattarN. FitchettD. HantelS. GeorgeJ.T. ZinmanB. Empagliflozin is associated with improvements in liver enzymes potentially consistent with reductions in liver fat: Results from randomised trials including the empa-reg outcome® trial.Diabetologia201861102155216310.1007/s00125‑018‑4702‑330066148
    [Google Scholar]
  80. ChoY.K. LeeJ. KangY.M. YooJ.H. ParkJ.Y. JungC.H. LeeW.J. Clinical parameters affecting the therapeutic efficacy of empagliflozin in patients with type 2 diabetes.PLoS One2019148e022066710.1371/journal.pone.022066731369642
    [Google Scholar]
  81. RodenM. MerkerL. ChristiansenA.V. RouxF. SalsaliA. KimG. StellaP. WoerleH.J. BroedlU.C. Safety, tolerability and effects on cardiometabolic risk factors of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes: A double-blind extension of a phase iii randomized controlled trial.Cardiovasc. Diabetol.201514115410.1186/s12933‑015‑0314‑026701110
    [Google Scholar]
  82. ZhangZ. NiL. ZhangL. ZhaD. HuC. ZhangL. FengH. WeiX. WuX. Empagliflozin regulates the adipoR1/p-AMPK/p-ACC pathway to alleviate lipid deposition in diabetic nephropathy.Diabetes Metab. Syndr. Obes.20211422724010.2147/DMSO.S28971233500643
    [Google Scholar]
  83. AbdelhadyH.A. Oumar AbakarA. GangavarapuR.R. MahmudS.A. ManandharA. SabirG. MalasevskaiaI. Impact of sodium-glucose cotransporter-2 inhibitors on heart failure in patients with type 2 diabetes mellitus: A systematic review.Cureus2024169e6856010.7759/cureus.6856039364510
    [Google Scholar]
  84. PennigJ. ScherrerP. GisslerM.C. Anto-MichelN. HoppeN. FünerL. HärdtnerC. StachonP. WolfD. HilgendorfI. MullickA. BodeC. ZirlikA. GoldbergI.J. WilleckeF. Glucose lowering by SGLT2-inhibitor empagliflozin accelerates atherosclerosis regression in hyperglycemic STZ-diabetic mice.Sci. Rep.2019911793710.1038/s41598‑019‑54224‑931784656
    [Google Scholar]
  85. KusakaH. KoibuchiN. HasegawaY. OgawaH. Kim-MitsuyamaS. Empagliflozin lessened cardiac injury and reduced visceral adipocyte hypertrophy in prediabetic rats with metabolic syndrome.Cardiovasc. Diabetol.201615115710.1186/s12933‑016‑0473‑727835975
    [Google Scholar]
  86. ShaoS.C. ChangK.C. LinS.J. ChangS.H. HungM.J. ChanY.Y. LaiE.C.C. Differences in outcomes of hospitalizations for heart failure after SGLT2 inhibitor treatment: Effect modification by atherosclerotic cardiovascular disease.Cardiovasc. Diabetol.202120121310.1186/s12933‑021‑01406‑334688282
    [Google Scholar]
  87. SchwegelN. StrohhoferC. KolesnikE. OlteanS. HüttmairA. PippC. BenediktM. VerheyenN. GollmerJ. AblasserK. WallnerM. SantnerV. TripoltN. PferschyP. ZechnerP. AlberH. Siller-MatulaJ.M. KoppK. ZirlikA. AzizF. SourijH. von LewinskiD. Impact of empagliflozin on cardiac structure and function assessed by echocardiography after myocardial infarction: A post-hoc sub-analysis of the emmy trial.Clin. Res. Cardiol.202410.1007/s00392‑024‑02523‑139297940
    [Google Scholar]
  88. MiricD. Juric PaicM. BorovacJ.A. Bradycardia-induced heart failure with preserved ejection fraction successfully treated with empagliflozin and theophylline: A case report.Eur. Heart J. Case Rep.202489ytae48110.1093/ehjcr/ytae48139286730
    [Google Scholar]
  89. FitchettD. InzucchiS.E. ZinmanB. WannerC. SchumacherM. SchmoorC. OhnebergK. OfstadA.P. SalsaliA. GeorgeJ.T. HantelS. BluhmkiE. LachinJ.M. ZannadF. Mediators of the improvement in heart failure outcomes with empagliflozin in the EMPA‐REG OUTCOME trial.ESC Heart Fail.2021864517452710.1002/ehf2.1361534605192
    [Google Scholar]
  90. SavcılıogluM.D. DuzenI.V. TuluceS.Y. SavcılıogluN. VuruskanE. AltunbasG. KaplanM. BalogluM. TaburS. SucuM. TaysıS. The effects of SGLT-2 inhibitors on echocardiographic indices and antioxidative properties in patients with heart failure with reduced ejection fraction and diabetes mellitus.Eur. Rev. Med. Pharmacol. Sci.202428164121413510.26355/eurrev_202408_3666539229842
    [Google Scholar]
  91. PackerM FerreiraJP ButlerJ FilippatosG JanuzziJLJr González MaldonadoS Panova-NoevaM PocockSJ ProchaskaJH SaadatiM SattarN SuminM AnkerSD ZannadF Reaffirmation of Mechanistic Proteomic Signatures Accompanying SGLT2 Inhibition in Patients With Heart Failure: A Validation Cohort of the EMPEROR Program. J Am Coll Cardiol.202484201979199410.1016/j.jacc.2024.07.01339217550
    [Google Scholar]
  92. BonnesenK. Heide-JørgensenU. ChristensenD.H. LashT.L. HennessyS. MatthewsA. PedersenL. ThomsenR.W. SchmidtM. Comparative Cardiovascular Effectiveness of Empagliflozin Versus Dapagliflozin in Adults With Treated Type 2 Diabetes: A Target Trial Emulation.Circulation20241501814011411Epub ahead of print10.1161/CIRCULATIONAHA.124.06861339206550
    [Google Scholar]
  93. MaY. HanJ. WangK. HanH. HuY. LiH. WuS. ZhangL. Research progress of ganoderma lucidum polysaccharide in prevention and treatment of atherosclerosis.Heliyon20241012e3330710.1016/j.heliyon.2024.e3330739022015
    [Google Scholar]
  94. HaoH. LiZ. QiaoS. QiY. XuX. SiJ. LiuY. ChangL. ShiY. XuB. WeiZ. KangL. Empagliflozin ameliorates atherosclerosis via regulating the intestinal flora.Atherosclerosis2023371324010.1016/j.atherosclerosis.2023.03.01136990029
    [Google Scholar]
  95. AnkerS.D. ButlerJ. FilippatosG. KhanM.S. MarxN. LamC.S.P. SchnaidtS. OfstadA.P. BrueckmannM. JamalW. BocchiE.A. PonikowskiP. PerroneS.V. JanuzziJ.L. VermaS. BöhmM. FerreiraJ.P. PocockS.J. ZannadF. PackerM. Effect of empagliflozin on cardiovascular and renal outcomes in patients with heart failure by baseline diabetes status.Circulation2021143433734910.1161/CIRCULATIONAHA.120.05182433175585
    [Google Scholar]
  96. LiangB. GuN. Empagliflozin in the treatment of heart failure and type 2 diabetes mellitus: Evidence from several large clinical trials.Int. J. Med. Sci.20221971118112110.7150/ijms.7277235919809
    [Google Scholar]
  97. LuoY. YeT. TianH. SongH. KanC. HanF. HouN. SunX. ZhangJ. Empagliflozin alleviates obesity-related cardiac dysfunction via the activation of sirt3-mediated autophagosome formation.Lipids Health Dis.202423130810.1186/s12944‑024‑02293‑939334359
    [Google Scholar]
  98. MayneK.J. SardellR.J. StaplinN. JudgeP.K. ZhuD. SammonsE. CherneyD.Z.I. GreenJ.B. LevinA. PontremoliR. HauskeS.J. EmbersonJ. PreissD. LandrayM.J. BaigentC. WannerC. HaynesR. HerringtonW.G. Empagliflozin lowers serum uric acid in chronic kidney disease: Exploratory analyses from the EMPA-KIDNEY trial.Nephrol. Dial. Transplant.2024gfae20310.1093/ndt/gfae20339277784
    [Google Scholar]
  99. ÇavuşoğluY AltayH ÇelikA GüvençTS KılıçarslanB NalbantgilS TemizhanA YıldırımtürkÖ YılmazMB Kalp yetersizliği tedavisinde sodyum glukoz ko-transporter 2 i̇nhibitörlerinin güncel kullanımı [current use of sodium glucose co-transporter 2 inhibitors in heart failure therapy.Turk Kardiyol Dern Ars.202452642945410.5543/tkda.2024.5270739225638
    [Google Scholar]
  100. RoyS. SaxenaM. PradhanA. EMPULSE trial: Time to use SGLT-2 inhibitors in acute heart failure?Natl. Med. J. India2024372939410.25259/NMJI_1190_202339222527
    [Google Scholar]
  101. PourafkariM. ConnellyK.A. VermaS. MazerC.D. TeohH. QuanA. GoodmanS.G. RaiA. NgM.Y. DevaD.P. TriverioP. Jiminez-JuanL. YanA.T. GeY. Empagliflozin and left atrial function in patients with type 2 diabetes mellitus and coronary artery disease: Insight from the EMPA-HEART CardioLink‐6 randomized clinical trial.Cardiovasc. Diabetol.202423131910.1186/s12933‑024‑02344‑639198860
    [Google Scholar]
  102. AngermannC.E. Santos-GallegoC.G. Requena-IbanezJ.A. SehnerS. ZellerT. GerhardtL.M.S. MaackC. SanzJ. FrantzS. FusterV. ErtlG. BadimonJ.J. Empagliflozin effects on iron metabolism as a possible mechanism for improved clinical outcomes in non-diabetic patients with systolic heart failure.Nature Cardiovascular Research20232111032104310.1038/s44161‑023‑00352‑539196095
    [Google Scholar]
  103. YangC.C. ChenK.H. YueY. ChengB.C. HsuT.W. ChiangJ.Y. ChenC.H. LiuF. XiaoJ. YipH.K. SGLT2 inhibitor downregulated oxidative stress via activating AMPK pathway for cardiorenal (CR) protection in CR syndrome rodent fed with high protein diet.J. Mol. Histol.202455580382310.1007/s10735‑024‑10233‑139190032
    [Google Scholar]
  104. TanY.J. LindenS. OngS.C. Cost-effectiveness of empagliflozin in the treatment of malaysian patients with chronic heart failure and preserved or mildly reduced ejection fraction.PLoS One2024198e030525710.1371/journal.pone.030525739178204
    [Google Scholar]
  105. WrightE.M. SGLT2 and cancer.Pflugers Arch.202047291407141410.1007/s00424‑020‑02448‑432820343
    [Google Scholar]
  106. WuW. WangY. XieJ. FanS. Empagliflozin: A potential anticancer drug.Discover Oncology202314112710.1007/s12672‑023‑00719‑x37436535
    [Google Scholar]
  107. EliaaS.G. Al-KarmalawyA.A. SalehR.M. ElshalM.F. Empagliflozin and doxorubicin synergistically inhibit the survival of triple-negative breast cancer cells via interfering with the mTOR pathway and inhibition of calmodulin: in vitro and molecular docking studies.ACS Pharmacol. Transl. Sci.2020361330133810.1021/acsptsci.0c0014433344906
    [Google Scholar]
  108. XieZ. WangF. LinL. DuanS. LiuX. LiX. LiT. XueM. ChengY. RenH. ZhuY. An SGLT2 inhibitor modulates SHH expression by activating AMPK to inhibit the migration and induce the apoptosis of cervical carcinoma cells.Cancer Lett.202049520021010.1016/j.canlet.2020.09.00532931885
    [Google Scholar]
  109. AbdelhamidA.M. SaberS. YoussefM.E. GaafarA.G.A. EissaH. Abd-EldayemM.A. AlqarniM. BatihaG.E.S. ObaidullahA.J. ShahienM.A. El-AhwanyE. AminN.A. EtmanM.A. KaddahM.M.Y. Abd El-FattahE.E. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application.Biomed. Pharmacother.202214511245510.1016/j.biopha.2021.11245534844106
    [Google Scholar]
  110. Uzma Faridi Fahad Al-Mutairi Humaira Parveen Sahar Khateeb An In-vitro and In silico anticancer study of FDA approved antidiabetic drugs glimepiride and empagliflozin.Int. J. Life Sci. Pharma Res.2022102525710.22376/ijpbs/lpr.2020.10.2.L52‑57
    [Google Scholar]
  111. HenriksenP.A. RankinS. LangN.N. Cardioprotection in patients at high risk of anthracycline-induced cardiotoxicity.JACC: CardioOncology20235329229710.1016/j.jaccao.2023.05.00437397086
    [Google Scholar]
  112. WolskE. JürgensM. SchouM. ErsbøllM. HasbakP. KjærA. ZerahnB. BrandtN.H. GædeP.H. RossingP. FaberJ. InzucchiS.E. KistorpC.M. GustafssonF. Randomized controlled trial of the hemodynamic effects of empagliflozin in patients with type 2 diabetes at high cardiovascular risk: The simple trial.Diabetes202271481282010.2337/db21‑072135061894
    [Google Scholar]
  113. DabourM.S. GeorgeM.Y. DanielM.R. BlaesA.H. ZordokyB.N. The Cardioprotective and Anticancer Effects of SGLT2 Inhibitors.JACC: CardioOncology20246215918210.1016/j.jaccao.2024.01.00738774006
    [Google Scholar]
  114. AbdelsalamR.M. HamamH.W. EissaN.M. El-SaharA.E. EssamR.M. Empagliflozin dampens doxorubicin-induced chemobrain in rats: The possible involvement of oxidative stress and PI3K/Akt/mTOR/NF-κB/TNF-α signaling pathways.Mol. Neurobiol.202410.1007/s12035‑024‑04499‑539302617
    [Google Scholar]
  115. XuB. ZhouJ. Sodium-glucose cotransporter 2 inhibitors and renal cancer in the US FDA adverse event reporting system.Eur. J. Clin. Pharmacol.202480121959196610.1007/s00228‑024‑03759‑639285057
    [Google Scholar]
  116. KarzoonA. YererM.B. CumaoğluA. Empagliflozin demonstrates cytotoxicity and synergy with tamoxifen in er-positive breast cancer cells: anti-proliferative and anti-survival effects.Naunyn Schmiedebergs Arch. Pharmacol.202410.1007/s00210‑024‑03316‑z39066911
    [Google Scholar]
  117. NaeimzadehY. TajbakhshA. NematiM. FallahiJ. Exploring the anti-cancer potential of SGLT2 inhibitors in breast cancer treatment in pre-clinical and clinical studies.Eur. J. Pharmacol.202497817680310.1016/j.ejphar.2024.17680338950839
    [Google Scholar]
  118. Farrokh-EslamlouN. MomtazS. NiknejadA. HosseiniY. MahdavianiP. Ghasemnejad-BerenjiM. AbdolghaffariA.H. Empagliflozin protective effects against cisplatin-induced acute nephrotoxicity by interfering with oxidative stress and inflammation in Wistar rats.Naunyn Schmiedebergs Arch. Pharmacol.202439797061707010.1007/s00210‑024‑03088‑638643451
    [Google Scholar]
  119. KristensenS.L. JhundP.S. LeeM.M.Y. KøberL. SolomonS.D. GrangerC.B. YusufS. PfefferM.A. SwedbergK. McMurrayJ.J.V. McMurray JJVCHARM Investigators and Committees. Prevalence of prediabetes and undiagnosed diabetes in patients with HFpEF and HFrEF and associated clinical outcomes.Cardiovasc. Drugs Ther.2017315-654554910.1007/s10557‑017‑6754‑x28948430
    [Google Scholar]
  120. KristensenS.L. PreissD. JhundP.S. SquireI. CardosoJ.S. MerkelyB. MartinezF. StarlingR.C. DesaiA.S. LefkowitzM.P. PARADIgm-hf investigators and committees. risk related to pre-diabetes and diabetes mellitus in heart failure with reduced ejection fraction: Insights from prospective comparison of arni with acei to determine impact on global mortality and morbidity in heart failure trial.Circ. Heart Fail.20169e00256010.1161/CIRCHEARTFAILURE.115.00256026754626
    [Google Scholar]
  121. WittelesR.M. FowlerM.B. Insulin-Resistant cardiomyopathy.J. Am. Coll. Cardiol.20085129310210.1016/j.jacc.2007.10.02118191731
    [Google Scholar]
  122. YangC.D. ShenY. LuL. DingF.H. YangZ.K. ZhangR.Y. ShenW.F. JinW. WangX.Q. Insulin resistance and dysglycemia are associated with left ventricular remodeling after myocardial infarction in non-diabetic patients.Cardiovasc. Diabetol.201918110010.1186/s12933‑019‑0904‑331391045
    [Google Scholar]
  123. UrielN. NakaY. ColomboP.C. FarrM. PakS.W. CotarlanV. AlbuJ.B. GallagherD. ManciniD. GinsbergH.N. JordeU.P. Improved diabetic control in advanced heart failure patients treated with left ventricular assist devices.Eur. J. Heart Fail.201113219519910.1093/eurjhf/hfq20421098576
    [Google Scholar]
  124. ThethiT.K. PratleyR. MeierJ.J. Efficacy, safety and cardiovascular outcomes of once‐daily oral semaglutide in patients with type 2 diabetes: The PIONEER programme.Diabetes Obes. Metab.20202281263127710.1111/dom.1405432267058
    [Google Scholar]
  125. AbrahamW.T. LindenfeldJ. PonikowskiP. AgostoniP. ButlerJ. DesaiA.S. FilippatosG. GniotJ. FuM. GullestadL. HowlettJ.G. NichollsS.J. RedonJ. SchenkenbergerI. Silva-CardosoJ. StörkS. Krzysztof WraniczJ. SavareseG. BrueckmannM. JamalW. NordabyM. PeilB. RitterI. UstyugovaA. ZellerC. SalsaliA. AnkerS.D. Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes.Eur. Heart J.202142670071010.1093/eurheartj/ehaa94333351892
    [Google Scholar]
  126. XuL. NagataN. ChenG. NagashimadaM. ZhugeF. NiY. SakaiY. KanekoS. OtaT. Empagliflozin reverses obesity and insulin resistance through fat browning and alternative macrophage activation in mice fed a high-fat diet.BMJ Open Diabetes Res. Care201971e00078310.1136/bmjdrc‑2019‑00078331749970
    [Google Scholar]
  127. ShubrookJH BokaieBB AdkinsSE Empagliflozin in the treatment of type 2 diabetes: Evidence to date.Drug Des Devel Ther.20159579380310.2147/DDDT.S6992626586935
    [Google Scholar]
  128. MathieuC. Van den MooterL. EeckhoutB. Empagliflozin in type 1 diabetes.Diabetes Metab. Syndr. Obes.2019121555156110.2147/DMSO.S19468831686876
    [Google Scholar]
  129. BoraV.R. GohelD. SinghR. PatelB.M. Evaluation of selected antidiabetics in cardiovascular complications associated with cancer cachexia.Mol. Cell. Biochem.2023478480782010.1007/s11010‑022‑04552‑836098898
    [Google Scholar]
  130. PerkinsB.A. CherneyD.Z.I. SoleymanlouN. LeeJ.A. PartridgeH. TschirhartH. ZinmanB. MazzeR. FaganN. KaspersS. WoerleH.J. BroedlU.C. JohansenO.E. Diurnal glycemic patterns during an 8-week open-label proof-of-concept trial of empagliflozin in type 1 diabetes.PLoS One20151011e014108510.1371/journal.pone.014108526544192
    [Google Scholar]
  131. KorbutA.I. KlimontovV.V. Empagliflozin: A new strategy for nephroprotection in diabetes.Diabetes mellitus2017201758410.14341/DM8005
    [Google Scholar]
  132. ThompsonG. HershonK. Options for empagliflozin in combination therapy in type 2 diabetes mellitus.Int. J. Gen. Med.2016915517210.2147/IJGM.S10028827307761
    [Google Scholar]
  133. American diabetes association standards of medical care in diabetes (section 7). Approaches to glycemic treatment.Diabetes Care201538Suppl.S41S48
    [Google Scholar]
  134. JARDIANCE® (empagliflozin) tablets for oral use.prescribing informationRidgefield, CTBoehringer Ingelheim Pharmaceuticals, Inc2015
    [Google Scholar]
  135. TotadeM. GaidhaneS.A. Role of ertugliflozin in the management of diabetes mellitus.Cureus20221411e3140410.7759/cureus.3140436523727
    [Google Scholar]
  136. ElhiniS.H. WahshE.A. ElberryA.A. El AmeenN.F. Abdelfadil SaediiA. RefaieS.M. ElsayedA.A. RabeaH.M. The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients.Pharmaceuticals20221512151610.3390/ph1512151636558967
    [Google Scholar]
  137. ShaoG. Pharmacological analysis of Empagliflozin: Acting through the CaMKII pathway in type 2 diabetes and acute cardiovascular events.PLoS One2022176e027015210.1371/journal.pone.027015235767566
    [Google Scholar]
  138. KugathasanL. DubrofskyL. AdvaniA. CherneyD.Z.I. The anti-hypertensive effects of sodium-glucose cotransporter-2 inhibitors.Expert Rev. Cardiovasc. Ther.202212010.1080/14779072.2023.215981036524239
    [Google Scholar]
/content/journals/nemj/10.2174/0102506882328936250115065100
Loading
/content/journals/nemj/10.2174/0102506882328936250115065100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test