Mini Reviews in Medicinal Chemistry - Volume 24, Issue 8, 2024
Volume 24, Issue 8, 2024
-
-
Roles of lncRNA-MALAT1 in the Progression and Prognosis of Gliomas
Authors: Yu-Long Ji, Kai Kang, Qiao-Li Lv and Da-Peng WangLong noncoding RNAs (lncRNAs) represent a large subgroup of RNA transcripts that lack the function of coding proteins and may be essential universal genes involved in carcinogenesis and metastasis. LncRNA metastasis-associated lung adenocarcinoma transcript 1 (lncRNAMALAT1) is overexpressed in various human tumors, including gliomas. However, the biological function and molecular mechanism of action of lncRNA-MALAT1 in gliomas have not yet been systematically elucidated. Accumulating evidence suggests that the abnormal expression of lncRNA-MALAT1 in gliomas is associated with various physical properties of the glioma, such as tumor growth, metastasis, apoptosis, drug resistance, and prognosis. Furthermore, lncRNAs, as tumor progression and prognostic markers in gliomas, may affect tumorigenesis, proliferation of glioma stem cells, and drug resistance. In this review, we summarize the knowledge on the biological functions and prognostic value of lncRNA-MALAT1 in gliomas. This mini-review aims to deepen the understanding of lncRNA-MALAT1 as a novel potential therapeutic target for the individualized precision treatment of gliomas.
-
-
-
The most Recent Compilation of Reactions of Enaminone Derivatives with various Amine Derivatives to Generate Biologically Active Compounds
Heterocyclic derivatives serve as the fundamental components of both natural and synthetic drugs. Enaminones play a crucial role as foundational units in the synthesis of numerous bioactive heterocyclic compounds, including pyrazoles, pyridines, oxazoles, isoxazoles, as well as fused heterocyclic structures like indoles, carbazoles, quinolines, acridines, and phenanthridines. These diverse heterocyclic rings are well-known for their various therapeutic activities, encompassing anticancer, anti-inflammatory, antimicrobial, antidepressant, and antiviral properties. By reacting with nitrogenbased nucleophiles, enaminones can generate bioactive azoles, azines, and their fused systems. This study focuses on the recent advancements in enaminone reactions with (a) nitrogen-based nucleophiles, such as aliphatic amines, derivatives of aniline, heterocyclic amines, hydroxylamine, hydrazine derivatives, guanidine derivatives, urea, and thiourea derivatives, and (b) nitrogen-based electrophiles, such as diazonium salts. These reactions have led to the synthesis of a wide range of bioactive fused heterocyclic compounds from 2010 to the end of 2022.
-
-
-
Antimicrobial and Cytotoxic Naphthoquinones from Microbial Origin: An Updated Review
Naphthoquinones (NQs) are small molecules bearing two carbonyl groups. They have been the subject of much research due to their significant biological activities such as antiproliferative, antimicrobial, anti-inflammatory, antioxidant, and antimalarial effects. NQs are produced mainly by bacteria, fungi and higher plants. Among them, microorganisms are a treasure of NQs with diverse skeletons and pharmacological properties. The purpose of the present study is to provide a comprehensive update on the structural diversity and biological activities of 91 microbial naphthoquinones isolated from 2015 to 2022, with a special focus on antimicrobial and cytotoxic activities. During this period, potent cytotoxic NQs such as naphthablin B (46) and hygrocin C (30) against HeLa (IC50=0.23 μg/ml) and MDA-MB-431 (IC50=0.5 μg/ml) cell lines was reported, respectively. In addition, rubromycin CA1 (39), exhibited strong antibacterial activity against Staphylococcus aureus (MIC of 0.2 μg/ml). As importance bioactive compounds, NQs may open new horizon for treatment of cancer and drug resistant bacteria. As such, it is hoped that this review article may stimulates further research into the isolation of further NQs from microbial, and other sources as well as the screening of such compounds for biological activity and beneficial uses.
-
-
-
Purinergic Signaling and its Role in the Stem Cell Differentiation
Authors: Sumera Zaib, Areeba and Imtiaz KhanPurinergic signaling is a mechanism in which extracellular purines and pyrimidines interact with specialized cell surface receptors known as purinergic receptors. These receptors are divided into two families of P1 and P2 receptors, each responding to different nucleosides and nucleotides. P1 receptors are activated by adenosine, while P2 receptors are activated by pyrimidine and purines. P2X receptors are ligand-gated ion channels, including seven subunits (P2X1-7). However, P2Y receptors are the G-protein coupled receptors comprising eight subtypes (P2Y1/2/4/6/11/12/13/14). The disorder in purinergic signaling leads to various health-related issues and diseases. In various aspects, it influences the activity of non-neuronal cells and neurons. The molecular mechanism of purinergic signaling provides insight into treating various human diseases. On the contrary, stem cells have been investigated for therapeutic applications. Purinergic signaling has shown promising effect in stem cell engraftment. The immune system promotes the autocrine and paracrine mechanisms and releases the significant factors essential for successful stem cell therapy. Each subtype of purinergic receptor exerts a beneficial effect on the damaged tissue. The most common effect caused by purinergic signaling is the proliferation and differentiation that treat different health-related conditions.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
