Mini Reviews in Medicinal Chemistry - Volume 22, Issue 9, 2022
Volume 22, Issue 9, 2022
-
-
Modulation of Long Non-coding RNAs by Different Classes of Secondary Metabolites from Plants: A Mini-review on Antitumor Effects
The broad pharmacological spectrum of plants is related to their secondary metabolism, which is responsible for the synthesis of different compounds that have multiple effects on cellular physiology. Among the biological effects presented by phytochemicals, their use for the prevention and treatment of cancer can be highlighted. This occurs due to several mechanisms of antitumor action demonstrated by these compounds, including regulation of the cell signaling pathways and inhibition of tumor growth. In this way, long non-coding RNAs (lncRNAs) appear to be promising targets for the treatment of cancer. Their deregulation has already been related to a variety of clinicalpathological parameters. However, the effects of secondary metabolites on lncRNAs are still restricted. For this reason, the present review aimed to gather data on phytochemicals with action on lncRNAs in order to confirm their possible antitumor potential. According to the literature, terpenoid and flavonoid are the main examples of secondary metabolites involved with lncRNAs activity. In addition, the lncRNAs H19, CASC2, HOTAIR, NKILA, CCAT1, MALAT1, AFAP1-AS1, MEG3, and CDKN2B-AS1 can be highlighted as important targets in the search for new anti-tumor agents since they act as modulating pathways related to cell proliferation, cell cycle, apoptosis, cell migration and invasion. Finally, challenges for the use of natural products as a commercial drug were also discussed. The low yield, selectivity index and undesirable pharmacokinetic parameters were emphasized as a difficulty for obtaining these compounds on a large scale and for improving the potency of its biological effect. However, the synthesis and/or development of formulations were suggested as a possible approach to solve these problems. All of these data together confirm the potential of secondary metabolites as a source of new anti-tumor agents acting on lncRNAs.
-
-
-
Inhibitory Activities of Pyrazolo-Oxazine Heterocyclic Derivatives
Authors: Thoraya A. Farghaly and Kamal M. DawoodDespite several reports and reviews addressing the biological significance of pyrazoles and oxazines, no comprehensive work on the pyrazolo oxazine fused ring system has been published so far. We report all biological evaluations on pyrazolo-oxazine derivatives in this mini-review to provide an avenue for medicinal and pharmacological researchers to conduct further in-depth exploration.
-
-
-
A Panoramic Review of Benzimidazole Derivatives and their Potential Biological Activity
More LessThe therapeutic potential of the benzimidazole nucleus has been recognized since 1944, and it is an important heterocycle system due to its presence in a wide range of bioactive compounds such as antiviral, anticancer, antibacterial, and so on, where optimization of substituents in this class of pharmacophore has resulted in many drugs. Its broad biological activity stems from physicochemical properties such as hydrogen bond donor-acceptor capability, π→π stacking interactions, coordination bonds with metals as ligands and hydrophobic interactions; properties that allow them to easily bind with a series of biomolecules, including enzymes and nucleic acids, causing a growing interest in these types of molecules. This review aims to present an overview to leading benzimidazole derivatives, as well as to show the importance of the nature and type of substituents at the N1, C2, and C5(6) positions when they are biologically evaluated, which can lead to obtaining potent drug candidate with a significant range of biological activities.
-
-
-
Phage-choline Kinase Inhibitor Combination to Control Pseudomonas aeruginosa: A Promising Combo
Authors: Moad Khalifa, Ling L. Few and Wei C. S. TooBackground: Pseudomonas aeruginosa is one of the most prevalent opportunistic pathogens in humans that has thrived and proved to be difficult to control in this “post-antibiotic era.” Antibiotic alternatives are necessary for fighting against this resilient bacterium. Even though phages might not be “the wonder drug” that solves everything, they still provide a viable option to combat P. aeruginosa and curb the threat it imposes. Main Findings: The combination of antibiotics with phages, however, poses a propitious treatment option for P. aeruginosa. Choline kinase (ChoK) is the enzyme that synthesizes phosphorylcholine subsequently incorporated into lipopolysaccharide located at the outer membrane of gram-negative bacteria. Recently, inhibition of ChoKs has been proposed as a promising antibacterial strategy. Successful docking of Hemicholinium-3, a choline kinase inhibitor, to the model structure of P. aeruginosa ChoK also supports the use of this inhibitor or its derivatives to inhibit the growth of this microorganism. Conclusion: Therefore, the combination of the novel antimicrobial “choline kinase inhibitors (ChoKIs)” with a phage cocktail or synthetic phages as a potential treatment for P. aeruginosa infection has been proposed.
-
-
-
Synthetic Approach to Potential Anticancer Benzimidazole Derivatives: A Review
Authors: Rajnish Kumar, Chanchal Singh, Avijit Mazumder, Salahuddin, Md. M. Abdullah, Vivek Kumar and Pavan Prakash GiriCancer is one of the deadliest diseases in many developed and developing countries. Continuous efforts are required for designing better therapeutic agents for the treatment of cancer with more efficacy, selectivity, and less toxicity. The fused heterocyclic ring system has been identified by several researchers as a privileged structure that can be used as the basis for drug discovery in medicinal chemistry. The hetero-aromatic bicyclic ring system acts as a pharmacophore in a wide range of drugs with therapeutic potential. According to studies in the literature, various substituted benzimidazoles have distinct pharmacological profiles with multi-targeting ability, making them an important anchor for the production of novel therapeutic agents against complex cancers, including breast cancer, skin cancer, and blood cancer. In this article, we have discussed various synthetic methods for the synthesis of anti-cancer benzimidazoles and their derivatives in different solvent conditions, substrates, and various catalysts, mainly those which are eco-friendly and economical. We also focused on various derivatives those are under clinical trials containing benzimidazole moiety.
-
-
-
The Role of LncRNA TUG1 in Obesity-related Diseases
Authors: Mengzhen Xue, Fangqi Xia, Yaqi Wang, Leiqi Zhu, Yuanyang Li, Dengke Jia, Yan Gao, Yue Shi, Changcheng Zhang, Yumin He, Chaoqi Liu, Ding Yuan and Chengfu YuanAs the living standards of people are increasingly improved, obesity has become a hotspot in our daily life. Obesity has been found as a chronic and recurrent disease with serious adverse consequences. Over the past few years, several articles indicated that long non-coding RNA taurine increased gene 1 (lncRNA TUG1), a useful RNA, which was indicated to show a relationship to obesity- related disease occurrence and development. Exosomes are recognized as an emerging research field that includes substances actively involved in regulating the molecular mechanisms of disease. This review summarizes the current relevant TUG1 in different molecular pathways of obesityassociated diseases, the correlation between exosomes and TUG1, or obesity-associated diseases. The aim is to explore TUG1 as a novel target for obesity, which can deepen the knowledge regarding the epigenetic regulation pathway. Furthermore, it is expected to focus on diseases associated with obesity treatment and diagnosis.
-
-
-
Therapeutic Journey and Recent Advances in the Synthesis of Coumarin Derivatives
Authors: Shweta Sinha, Kuldeep Singh, Akash Ved, Syed M. Hasan and Samar MujeebBackground: Coumarin is an oxygen-containing compound in medicinal chemistry. Coumarin plays an important role in both natural systems like plants and synthetic medicinal applications as drug molecules. Many structurally different coumarin compounds have been found to possess a wide range of similarities with the vital molecular targets in terms of their pharmacological action and small modifications in their structures, resulting in significant changes in their biological activities. Objective: This review provides detailed information regarding the studies focused on the recent advances in various pharmacological aspects of coumarins. Methods: Various oxygen-containing heterocyclic compounds represent remarkable biological significance. The fused aromatic oxygen-heterocyclic nucleus can change its electron density, thus altering the chemical, physical and biological properties, respectively, due to its multiple binding modes with the receptors, which play a crucial role in the pharmacological screening of drugs. Several heterocyclic compounds have been synthesized which have their nuclei derived from various plants and animals. In coumarins, the benzene ring is fused with a pyrone nucleus which provides stability to the nucleus. Coumarins have shown a wide range of pharmacological activities, such as anti-tumor, anticoagulant, anti-inflammatory, anti-oxidant, antiviral, antimalarial, anti-HIV, antimicrobial, etc. Results: Reactive oxygen species, like superoxide anion, hydroxyl radical, and hydrogen peroxide, are a type of unstable molecule containing oxygen, which reacts with other molecules in the cell during metabolism; however, when the number of reactive oxygen species increases, it may lead to cytotoxicity, thereby damaging the biological macromolecules. Hydroxyl Radical (OH) is a strong oxidizing agent and it is responsible for the cytotoxicity caused by oxygen in different plants, animals, and other microbes. Coumarin is the oldest and effective compound having antimicrobial, anti-inflammatory, antioxidant, antidepressant, analgesic, anticonvulsant activities, etc. Naturally existing coumarin compounds act against SARS-CoV-2 by preventing viral replication and targeting the active site against the Mpro target protein. Conclusion: This review highlights the different biological activities of coumarin derivatives. In this review, we provide an updated summary of the researches which are related to recent advances in biological activities of coumarins analogs and their most recent activities against COVID -19. Natural compounds act as a rich resource for novel drug development against various SARS-CoV-2 viral strains and viruses, like herpes simplex virus, influenza virus, human immunodeficiency virus, hepatitis B and C viruses, middle east respiratory syndrome, and severe acute respiratory syndrome.
-
-
-
Role of Pentacyclic Triterpenoid Acids in the Treatment of Bladder Cancer
Authors: Anindita Ghosh and Chinmay K. PandaBladder cancer carries a poor prognosis and has proven resistance to chemotherapy. Pentacyclic Triterpenoid Acids (PTAs) are natural bioactive compounds that have a well-known impact on cancer research because of their cytotoxic and chemopreventive activities. This review focuses on bladder cancer which can no longer be successfully treated by DNA damaging drugs. Unlike most of the existing drugs against bladder cancer, PTAs are non-toxic to normal cells. Collecting findings from both in vitro and in vivo studies, it has been concluded that PTAs may serve as promising agents in future bladder cancer therapy. In this review, the roles of various PTAs in bladder cancer have been explored, and their mechanisms of action in the treatment of bladder cancer have been described. Specific PTAs have been shortlisted from each of the chief skeletons of pentacyclic triterpenoids, which could be effective against bladder cancer because of their mode of action. This review thereby throws light on the multi targets and mechanisms of PTAs, which are responsible for their selective anticancer effects and provides guidelines for further research and development of new natural antitumor compounds.
-
-
-
Review on Characteristics and Analytical Methods of Remogliflozin Etabonate: An Update
Authors: Vallabh D. Suryavanshi, Sanjay Sharma and Jagdish K. SahuHyperglycemia and its associated disorders like Diabetes mellitus are engulfing the world’s population at a faster pace. New-age medications like the SGLT 2 inhibitors have found their place in the run to combat DM. Drugs with these properties have proven to be effective in treating hyperglycemia, obesity, and major cardiac disorders. The interesting fact about these drugs is that they act independently of insulin levels in the patient’s body. The fact that they even bypass the side effects shown by currently used anti-diabetic medications has attracted the world’s hope to neutralize diabetes mellitus. The invention of Remogliflozin Etabonate (RGE), an SGLT 2 inhibitor, has therefore added a silver lining to the gliflozin-family of drugs in the fight against DM. This is due to its least side effects as well as its effective mechanisms to treat hyperglycemia. It can be administered not only as a single entity but also can be co-administered in combination with other anti-hyperglycemic agents. RGE is already sold in the Indian market as REMO-ZEN, by Glenmark Pharmaceuticals. It has been studied thoroughly for its pharmacokinetic and pharmacodynamic profile. It is a benzylpyrazole glucoside. Various analytical methods have been formulated for its detection, quantification, and routine quality control activities. RGE can be studied with the help of UV-visible spectrophotometry, High-Performance Liquid Chromatography (HPLC) and Hyphenated techniques like Liquid Chromatography- Mass Spectroscopy (LC-MS/MS). This review briefs about the overall chemical, pharmacological, pharmacokinetic and pharmacodynamics properties of RGE. It mainly discusses various analytical techniques used for determining and estimating RGE.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
