Mini Reviews in Medicinal Chemistry - Volume 22, Issue 8, 2022
Volume 22, Issue 8, 2022
-
-
Hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) Simulation: A Tool for Structure-Based Drug Design and Discovery
Authors: Prajakta U. Kulkarni, Harshil Shah and Vivek K. VyasQuantum Mechanics (QM) is the physics-based theory that explains the physical properties of nature at the level of atoms and sub-atoms. Molecular mechanics (MM) construct molecular systems through the use of classical mechanics. So, when combined, hybrid quantum mechanics and molecular mechanics (QM/MM) can act as computer-based methods that can be used to calculate the structure and property data of molecular structures. Hybrid QM/MM combines the strengths of QM with accuracy and MM with speed. QM/MM simulation can also be applied for the study of chemical processes in solutions, as well as in the proteins, and has a great scope in structure-based drug design (SBDD) and discovery. Hybrid QM/MM can also be applied to HTS to derive QSAR models. Due to the availability of many protein crystal structures, it has a great role in computational chemistry, especially in structure- and fragment-based drug design. Fused QM/MM simulations have been developed as a widespread method to explore chemical reactions in condensed phases. In QM/MM simulations, the quantum chemistry theory is used to treat the space in which the chemical reactions occur; however, the rest is defined through the molecular mechanics force field (MMFF). In this review, we have extensively reviewed recent literature pertaining to the use and applications of hybrid QM/MM simulations for ligand and structure-based computational methods for the design and discovery of therapeutic agents.
-
-
-
A Critical Observation on the Design and Development of Reported Peptide Inhibitors of DENV NS2B-NS3 Protease in the Last Two Decades
Dengue is one of the neglected tropical diseases, which remains a reason for concern as cases seem to rise every year. The failure of the only dengue vaccine, Dengvaxia® , has made the problem more severe and humanity has no immediate respite from this global burden. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing. Also, since it is among the most conserved domains in the viral genome, it could produce a broad scope of opportunities toward antiviral drug discovery in general. This review has made a detailed analysis of each case of the design and development of peptide inhibitors against DENV NS2B-NS3 protease in the last two decades. Also, we have discussed the reasons attributed to their inhibitory activity, and wherever possible, we have highlighted the concerns raised, challenges met, and suggestions to improve the inhibitory activity. Thus, we attempt to take the readers through the designing and development of reported peptide inhibitors and gain insight from these developments, which could further contribute toward strategizing the designing and development of peptide inhibitors of DENV protease with improved properties in the coming future.
-
-
-
The Toxicity Testing of Cyanobacterial Toxins In vivo and In vitro by Mouse Bioassay: A Review
Authors: Hamed Ahari, Bahareh Nowruzi, Amir A. Anvar and Samaneh Jafari PorzaniDifferent biological methods based on bioactivity are available to detect cyanotoxins, including neurotoxicity, immunological interactions, hepatotoxicity, cytotoxicity, and enzymatic activity. The mouse bioassay is the first test employed in laboratory cultures, cell extracts, and water bloom materials to detect toxins. It is also used as a traditional method to estimate the LD50. Concerning the ease of access and low cost, it is the most common method for this purpose. In this method, a sample is injected intraperitoneally into adult mice, and accordingly, they are assayed and monitored for about 24 hours for toxic symptoms. The toxin can be detected using this method from minutes to a few hours; its type, e.g., hepatotoxin, neurotoxin, etc., can also be determined. However, this method is nonspecific, fails to detect low amounts, and cannot distinguish between homologues. Although the mouse bioassay is gradually replaced with new chemical and immunological methods, it is still the main technique to detect the bioactivity and efficacy of cyanotoxins using LD50 determined based on the survival time of animals exposed to the toxin. In addition, some countries oppose animal use in toxicity studies. However, high cost, ethical considerations, low-sensitivity, non-specificity, and prolonged processes persuade researchers to employ chemical and functional analysis techniques. The qualitative and quantitative analyses, as well as high specificity and sensitivity, are among the advantages of cytotoxicity tests to investigate cyanotoxins. The present study aimed at reviewing the results obtained from in vitro and in vivo investigations of the mouse bioassay to detect cyanotoxins, including microcystins, cylindrospermopsin, saxitoxins, etc.
-
-
-
Recent Updates on Sinularia Soft Coral
Marine organisms are recognized as a rich source of bioactive secondary metabolites. The remarkable abundance and diversity of bioactive small molecules isolated from soft corals displayed their essential role in drug discovery for human diseases. Sterols and terpenes, particularly cembranolides, 14-membered cyclic diterpene, demonstrated numerous biological activities, such as antitumor, antimicrobial, antiviral, antidiabetic, anti-osteoporosis and anti-inflammatory. Accordingly, continuous investigation of marine soft corals leads the way to discover a plentiful number of chemical diverse natural products with various biological potentials for prospective pharmaceutical industrial applications. Such review affords plenary inspection of the total secondary metabolites isolated from the Sinularia, from 2008 until 2020, besides their natural sources as well as bioactivities whenever possible.
-
-
-
Advances in Pyrazole Based Scaffold as Cyclin-dependent Kinase 2 Inhibitors for the Treatment of Cancer
Authors: Jahara Shaikh, Kavitkumar Patel and Tabassum KhanThe transformation of a normal cell into a tumor cell is one of the initial steps in cell cycle deregulation. The cell cycle is regulated by cyclin-dependent kinases (CDKs) that belong to the protein kinase family. CDK2 is an enchanting target for specific genotype tumors since cyclin E is selective for CDK2 and the deregulation of specific cancer types. Thus, CDKs inhibitor, specifically CDK2/cyclin A-E, has the potential to be a valid cancer target as per the currently undergoing clinical trials. Most of the pyrazole scaffolds have shown selectivity and potency for CDK2 inhibitors. This review aims at examining pyrazole and pyrazole fused with other heterocyclic rings for antiproliferative activity. Based on the in vitro and molecular docking studies, the most potent analogues for CDK2 inhibition are exhibited by IC50 value. Moreover, the review emphasizes the various lead analogs of pyrazole hybrids which can be very potent and selective for anti-cancer drugs.
-
-
-
A Systematic Review of Machine Learning Based Gait Characteristics in Parkinson’s Disease
Authors: Pooja Sharma, SK Pahuja and Karan VeerObjective: Parkinson’s disease is a pervasive neuro disorder that affects people's quality of life throughout the world. The unsatisfactory results of clinical rating scales open the door for more research. PD treatment using current biomarkers seems a difficult task. So automatic evaluation at an early stage may enhance the quality and time period of life. Methods: Grading of Recommendations Assessment, Development, and Evaluation (GRADE) and population, Intervention, Comparison, and Outcome (PICO) search methodology schemes are followed to search the data and eligible studies for this survey. Approximate 1500 articles were extracted using related search strings. After the stepwise mapping and elimination of studies, 94 papers are found suitable for the present review. Results: After the quality assessment of extracted studies, nine inhibitors are identified to analyze people's gait with Parkinson’s disease, where four are critical. This review also differentiates the various machine learning classification techniques with their PD analysis characteristics in previous studies. The extracted research gaps are described as future perspectives. Results can help practitioners understand the PD gait as a valuable biomarker for detection, quantification, and classification. Conclusion: Due to less cost and easy recording of gait, gait-based techniques are becoming popular in PD detection. By encapsulating the gait-based studies, it gives an in-depth knowledge of PD, different measures that affect gait detection and classification.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
